| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shjshs.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shjshs.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
shjval |
⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 5 |
1 2
|
shunssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |
| 6 |
1
|
shssii |
⊢ 𝐴 ⊆ ℋ |
| 7 |
2
|
shssii |
⊢ 𝐵 ⊆ ℋ |
| 8 |
6 7
|
unssi |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 9 |
1 2
|
shscli |
⊢ ( 𝐴 +ℋ 𝐵 ) ∈ Sℋ |
| 10 |
9
|
shssii |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ |
| 11 |
8 10
|
occon2i |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
| 12 |
5 11
|
ax-mp |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 13 |
4 12
|
eqsstri |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 14 |
1 2
|
shsleji |
⊢ ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 15 |
1 2
|
shjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 16 |
15
|
chssii |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ |
| 17 |
|
occon |
⊢ ( ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ ∧ ( 𝐴 ∨ℋ 𝐵 ) ⊆ ℋ ) → ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ) |
| 18 |
10 16 17
|
mp2an |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |
| 19 |
14 18
|
ax-mp |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) |
| 20 |
|
occl |
⊢ ( ( 𝐴 +ℋ 𝐵 ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ ) |
| 21 |
10 20
|
ax-mp |
⊢ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ∈ Cℋ |
| 22 |
15 21
|
chsscon1i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ⊆ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ↔ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) ) |
| 23 |
19 22
|
mpbi |
⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 24 |
13 23
|
eqssi |
⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 +ℋ 𝐵 ) ) ) |