Metamath Proof Explorer


Theorem shunssi

Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1 𝐴S
shincl.2 𝐵S
Assertion shunssi ( 𝐴𝐵 ) ⊆ ( 𝐴 + 𝐵 )

Proof

Step Hyp Ref Expression
1 shincl.1 𝐴S
2 shincl.2 𝐵S
3 1 sheli ( 𝑥𝐴𝑥 ∈ ℋ )
4 ax-hvaddid ( 𝑥 ∈ ℋ → ( 𝑥 + 0 ) = 𝑥 )
5 4 eqcomd ( 𝑥 ∈ ℋ → 𝑥 = ( 𝑥 + 0 ) )
6 3 5 syl ( 𝑥𝐴𝑥 = ( 𝑥 + 0 ) )
7 sh0 ( 𝐵S → 0𝐵 )
8 2 7 ax-mp 0𝐵
9 rspceov ( ( 𝑥𝐴 ∧ 0𝐵𝑥 = ( 𝑥 + 0 ) ) → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
10 8 9 mp3an2 ( ( 𝑥𝐴𝑥 = ( 𝑥 + 0 ) ) → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
11 6 10 mpdan ( 𝑥𝐴 → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
12 2 sheli ( 𝑥𝐵𝑥 ∈ ℋ )
13 hvaddid2 ( 𝑥 ∈ ℋ → ( 0 + 𝑥 ) = 𝑥 )
14 13 eqcomd ( 𝑥 ∈ ℋ → 𝑥 = ( 0 + 𝑥 ) )
15 12 14 syl ( 𝑥𝐵𝑥 = ( 0 + 𝑥 ) )
16 sh0 ( 𝐴S → 0𝐴 )
17 1 16 ax-mp 0𝐴
18 rspceov ( ( 0𝐴𝑥𝐵𝑥 = ( 0 + 𝑥 ) ) → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
19 17 18 mp3an1 ( ( 𝑥𝐵𝑥 = ( 0 + 𝑥 ) ) → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
20 15 19 mpdan ( 𝑥𝐵 → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
21 11 20 jaoi ( ( 𝑥𝐴𝑥𝐵 ) → ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
22 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
23 1 2 shseli ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑦𝐴𝑧𝐵 𝑥 = ( 𝑦 + 𝑧 ) )
24 21 22 23 3imtr4i ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝑥 ∈ ( 𝐴 + 𝐵 ) )
25 24 ssriv ( 𝐴𝐵 ) ⊆ ( 𝐴 + 𝐵 )