| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shincl.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
shincl.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
1
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
| 4 |
|
ax-hvaddid |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 +ℎ 0ℎ ) = 𝑥 ) |
| 5 |
4
|
eqcomd |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) |
| 7 |
|
sh0 |
⊢ ( 𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵 ) |
| 8 |
2 7
|
ax-mp |
⊢ 0ℎ ∈ 𝐵 |
| 9 |
|
rspceov |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 10 |
8 9
|
mp3an2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = ( 𝑥 +ℎ 0ℎ ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 11 |
6 10
|
mpdan |
⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 12 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
| 13 |
|
hvaddlid |
⊢ ( 𝑥 ∈ ℋ → ( 0ℎ +ℎ 𝑥 ) = 𝑥 ) |
| 14 |
13
|
eqcomd |
⊢ ( 𝑥 ∈ ℋ → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
| 15 |
12 14
|
syl |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) |
| 16 |
|
sh0 |
⊢ ( 𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴 ) |
| 17 |
1 16
|
ax-mp |
⊢ 0ℎ ∈ 𝐴 |
| 18 |
|
rspceov |
⊢ ( ( 0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 19 |
17 18
|
mp3an1 |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 0ℎ +ℎ 𝑥 ) ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 20 |
15 19
|
mpdan |
⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 21 |
11 20
|
jaoi |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 22 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 23 |
1 2
|
shseli |
⊢ ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 24 |
21 22 23
|
3imtr4i |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ) |
| 25 |
24
|
ssriv |
⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 +ℋ 𝐵 ) |