Description: Union is smaller than Hilbert lattice join. (Contributed by NM, 11-Jun-2004) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| shincl.2 | ⊢ 𝐵 ∈ Sℋ | ||
| Assertion | shunssji | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shincl.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | shincl.2 | ⊢ 𝐵 ∈ Sℋ | |
| 3 | 1 | shssii | ⊢ 𝐴 ⊆ ℋ |
| 4 | 2 | shssii | ⊢ 𝐵 ⊆ ℋ |
| 5 | 3 4 | unssi | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ℋ |
| 6 | ococss | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ ℋ → ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 8 | shjval | ⊢ ( ( 𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 9 | 1 2 8 | mp2an | ⊢ ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 10 | 7 9 | sseqtrri | ⊢ ( 𝐴 ∪ 𝐵 ) ⊆ ( 𝐴 ∨ℋ 𝐵 ) |