Metamath Proof Explorer


Theorem lshpinN

Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpin.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpin.w ( 𝜑𝑊 ∈ LVec )
lshpin.t ( 𝜑𝑇𝐻 )
lshpin.u ( 𝜑𝑈𝐻 )
Assertion lshpinN ( 𝜑 → ( ( 𝑇𝑈 ) ∈ 𝐻𝑇 = 𝑈 ) )

Proof

Step Hyp Ref Expression
1 lshpin.h 𝐻 = ( LSHyp ‘ 𝑊 )
2 lshpin.w ( 𝜑𝑊 ∈ LVec )
3 lshpin.t ( 𝜑𝑇𝐻 )
4 lshpin.u ( 𝜑𝑈𝐻 )
5 inss1 ( 𝑇𝑈 ) ⊆ 𝑇
6 2 adantr ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → 𝑊 ∈ LVec )
7 simpr ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → ( 𝑇𝑈 ) ∈ 𝐻 )
8 3 adantr ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → 𝑇𝐻 )
9 1 6 7 8 lshpcmp ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → ( ( 𝑇𝑈 ) ⊆ 𝑇 ↔ ( 𝑇𝑈 ) = 𝑇 ) )
10 5 9 mpbii ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → ( 𝑇𝑈 ) = 𝑇 )
11 inss2 ( 𝑇𝑈 ) ⊆ 𝑈
12 4 adantr ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → 𝑈𝐻 )
13 1 6 7 12 lshpcmp ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → ( ( 𝑇𝑈 ) ⊆ 𝑈 ↔ ( 𝑇𝑈 ) = 𝑈 ) )
14 11 13 mpbii ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → ( 𝑇𝑈 ) = 𝑈 )
15 10 14 eqtr3d ( ( 𝜑 ∧ ( 𝑇𝑈 ) ∈ 𝐻 ) → 𝑇 = 𝑈 )
16 15 ex ( 𝜑 → ( ( 𝑇𝑈 ) ∈ 𝐻𝑇 = 𝑈 ) )
17 inidm ( 𝑇𝑇 ) = 𝑇
18 17 3 eqeltrid ( 𝜑 → ( 𝑇𝑇 ) ∈ 𝐻 )
19 ineq2 ( 𝑇 = 𝑈 → ( 𝑇𝑇 ) = ( 𝑇𝑈 ) )
20 19 eleq1d ( 𝑇 = 𝑈 → ( ( 𝑇𝑇 ) ∈ 𝐻 ↔ ( 𝑇𝑈 ) ∈ 𝐻 ) )
21 18 20 syl5ibcom ( 𝜑 → ( 𝑇 = 𝑈 → ( 𝑇𝑈 ) ∈ 𝐻 ) )
22 16 21 impbid ( 𝜑 → ( ( 𝑇𝑈 ) ∈ 𝐻𝑇 = 𝑈 ) )