| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpin.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
| 2 |
|
lshpin.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 3 |
|
lshpin.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝐻 ) |
| 4 |
|
lshpin.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
| 5 |
|
inss1 |
⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → 𝑊 ∈ LVec ) |
| 7 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) |
| 8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → 𝑇 ∈ 𝐻 ) |
| 9 |
1 6 7 8
|
lshpcmp |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑇 ↔ ( 𝑇 ∩ 𝑈 ) = 𝑇 ) ) |
| 10 |
5 9
|
mpbii |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → ( 𝑇 ∩ 𝑈 ) = 𝑇 ) |
| 11 |
|
inss2 |
⊢ ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 |
| 12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → 𝑈 ∈ 𝐻 ) |
| 13 |
1 6 7 12
|
lshpcmp |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → ( ( 𝑇 ∩ 𝑈 ) ⊆ 𝑈 ↔ ( 𝑇 ∩ 𝑈 ) = 𝑈 ) ) |
| 14 |
11 13
|
mpbii |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → ( 𝑇 ∩ 𝑈 ) = 𝑈 ) |
| 15 |
10 14
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) → 𝑇 = 𝑈 ) |
| 16 |
15
|
ex |
⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 → 𝑇 = 𝑈 ) ) |
| 17 |
|
inidm |
⊢ ( 𝑇 ∩ 𝑇 ) = 𝑇 |
| 18 |
17 3
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑇 ∩ 𝑇 ) ∈ 𝐻 ) |
| 19 |
|
ineq2 |
⊢ ( 𝑇 = 𝑈 → ( 𝑇 ∩ 𝑇 ) = ( 𝑇 ∩ 𝑈 ) ) |
| 20 |
19
|
eleq1d |
⊢ ( 𝑇 = 𝑈 → ( ( 𝑇 ∩ 𝑇 ) ∈ 𝐻 ↔ ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) ) |
| 21 |
18 20
|
syl5ibcom |
⊢ ( 𝜑 → ( 𝑇 = 𝑈 → ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ) ) |
| 22 |
16 21
|
impbid |
⊢ ( 𝜑 → ( ( 𝑇 ∩ 𝑈 ) ∈ 𝐻 ↔ 𝑇 = 𝑈 ) ) |