Metamath Proof Explorer


Theorem lshpinN

Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpin.h H=LSHypW
lshpin.w φWLVec
lshpin.t φTH
lshpin.u φUH
Assertion lshpinN φTUHT=U

Proof

Step Hyp Ref Expression
1 lshpin.h H=LSHypW
2 lshpin.w φWLVec
3 lshpin.t φTH
4 lshpin.u φUH
5 inss1 TUT
6 2 adantr φTUHWLVec
7 simpr φTUHTUH
8 3 adantr φTUHTH
9 1 6 7 8 lshpcmp φTUHTUTTU=T
10 5 9 mpbii φTUHTU=T
11 inss2 TUU
12 4 adantr φTUHUH
13 1 6 7 12 lshpcmp φTUHTUUTU=U
14 11 13 mpbii φTUHTU=U
15 10 14 eqtr3d φTUHT=U
16 15 ex φTUHT=U
17 inidm TT=T
18 17 3 eqeltrid φTTH
19 ineq2 T=UTT=TU
20 19 eleq1d T=UTTHTUH
21 18 20 syl5ibcom φT=UTUH
22 16 21 impbid φTUHT=U