Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpin.h | |
|
lshpin.w | |
||
lshpin.t | |
||
lshpin.u | |
||
Assertion | lshpinN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpin.h | |
|
2 | lshpin.w | |
|
3 | lshpin.t | |
|
4 | lshpin.u | |
|
5 | inss1 | |
|
6 | 2 | adantr | |
7 | simpr | |
|
8 | 3 | adantr | |
9 | 1 6 7 8 | lshpcmp | |
10 | 5 9 | mpbii | |
11 | inss2 | |
|
12 | 4 | adantr | |
13 | 1 6 7 12 | lshpcmp | |
14 | 11 13 | mpbii | |
15 | 10 14 | eqtr3d | |
16 | 15 | ex | |
17 | inidm | |
|
18 | 17 3 | eqeltrid | |
19 | ineq2 | |
|
20 | 19 | eleq1d | |
21 | 18 20 | syl5ibcom | |
22 | 16 21 | impbid | |