Metamath Proof Explorer


Theorem lshpcmp

Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014)

Ref Expression
Hypotheses lshpcmp.h H = LSHyp W
lshpcmp.w φ W LVec
lshpcmp.t φ T H
lshpcmp.u φ U H
Assertion lshpcmp φ T U T = U

Proof

Step Hyp Ref Expression
1 lshpcmp.h H = LSHyp W
2 lshpcmp.w φ W LVec
3 lshpcmp.t φ T H
4 lshpcmp.u φ U H
5 eqid Base W = Base W
6 lveclmod W LVec W LMod
7 2 6 syl φ W LMod
8 5 1 7 4 lshpne φ U Base W
9 eqid LSubSp W = LSubSp W
10 9 1 7 4 lshplss φ U LSubSp W
11 5 9 lssss U LSubSp W U Base W
12 10 11 syl φ U Base W
13 eqid LSpan W = LSpan W
14 eqid LSSum W = LSSum W
15 5 13 9 14 1 7 islshpsm φ T H T LSubSp W T Base W v Base W T LSSum W LSpan W v = Base W
16 3 15 mpbid φ T LSubSp W T Base W v Base W T LSSum W LSpan W v = Base W
17 16 simp3d φ v Base W T LSSum W LSpan W v = Base W
18 id φ v Base W φ v Base W
19 18 adantrr φ v Base W T LSSum W LSpan W v = Base W φ v Base W
20 2 adantr φ v Base W W LVec
21 9 1 7 3 lshplss φ T LSubSp W
22 21 adantr φ v Base W T LSubSp W
23 10 adantr φ v Base W U LSubSp W
24 simpr φ v Base W v Base W
25 5 9 13 14 20 22 23 24 lsmcv φ v Base W T U U T LSSum W LSpan W v U = T LSSum W LSpan W v
26 19 25 syl3an1 φ v Base W T LSSum W LSpan W v = Base W T U U T LSSum W LSpan W v U = T LSSum W LSpan W v
27 26 3expia φ v Base W T LSSum W LSpan W v = Base W T U U T LSSum W LSpan W v U = T LSSum W LSpan W v
28 simplrr φ v Base W T LSSum W LSpan W v = Base W T U T LSSum W LSpan W v = Base W
29 28 sseq2d φ v Base W T LSSum W LSpan W v = Base W T U U T LSSum W LSpan W v U Base W
30 28 eqeq2d φ v Base W T LSSum W LSpan W v = Base W T U U = T LSSum W LSpan W v U = Base W
31 27 29 30 3imtr3d φ v Base W T LSSum W LSpan W v = Base W T U U Base W U = Base W
32 31 exp42 φ v Base W T LSSum W LSpan W v = Base W T U U Base W U = Base W
33 32 rexlimdv φ v Base W T LSSum W LSpan W v = Base W T U U Base W U = Base W
34 17 33 mpd φ T U U Base W U = Base W
35 12 34 mpid φ T U U = Base W
36 35 necon3ad φ U Base W ¬ T U
37 8 36 mpd φ ¬ T U
38 df-pss T U T U T U
39 38 simplbi2 T U T U T U
40 39 necon1bd T U ¬ T U T = U
41 37 40 syl5com φ T U T = U
42 eqimss T = U T U
43 41 42 impbid1 φ T U T = U