Step |
Hyp |
Ref |
Expression |
1 |
|
lshpcmp.h |
|- H = ( LSHyp ` W ) |
2 |
|
lshpcmp.w |
|- ( ph -> W e. LVec ) |
3 |
|
lshpcmp.t |
|- ( ph -> T e. H ) |
4 |
|
lshpcmp.u |
|- ( ph -> U e. H ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
7 |
2 6
|
syl |
|- ( ph -> W e. LMod ) |
8 |
5 1 7 4
|
lshpne |
|- ( ph -> U =/= ( Base ` W ) ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
9 1 7 4
|
lshplss |
|- ( ph -> U e. ( LSubSp ` W ) ) |
11 |
5 9
|
lssss |
|- ( U e. ( LSubSp ` W ) -> U C_ ( Base ` W ) ) |
12 |
10 11
|
syl |
|- ( ph -> U C_ ( Base ` W ) ) |
13 |
|
eqid |
|- ( LSpan ` W ) = ( LSpan ` W ) |
14 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
15 |
5 13 9 14 1 7
|
islshpsm |
|- ( ph -> ( T e. H <-> ( T e. ( LSubSp ` W ) /\ T =/= ( Base ` W ) /\ E. v e. ( Base ` W ) ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) ) |
16 |
3 15
|
mpbid |
|- ( ph -> ( T e. ( LSubSp ` W ) /\ T =/= ( Base ` W ) /\ E. v e. ( Base ` W ) ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) |
17 |
16
|
simp3d |
|- ( ph -> E. v e. ( Base ` W ) ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) |
18 |
|
id |
|- ( ( ph /\ v e. ( Base ` W ) ) -> ( ph /\ v e. ( Base ` W ) ) ) |
19 |
18
|
adantrr |
|- ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) -> ( ph /\ v e. ( Base ` W ) ) ) |
20 |
2
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> W e. LVec ) |
21 |
9 1 7 3
|
lshplss |
|- ( ph -> T e. ( LSubSp ` W ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> T e. ( LSubSp ` W ) ) |
23 |
10
|
adantr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> U e. ( LSubSp ` W ) ) |
24 |
|
simpr |
|- ( ( ph /\ v e. ( Base ` W ) ) -> v e. ( Base ` W ) ) |
25 |
5 9 13 14 20 22 23 24
|
lsmcv |
|- ( ( ( ph /\ v e. ( Base ` W ) ) /\ T C. U /\ U C_ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) ) |
26 |
19 25
|
syl3an1 |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U /\ U C_ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) ) -> U = ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) ) |
27 |
26
|
3expia |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U ) -> ( U C_ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) -> U = ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) ) ) |
28 |
|
simplrr |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U ) -> ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) |
29 |
28
|
sseq2d |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U ) -> ( U C_ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) <-> U C_ ( Base ` W ) ) ) |
30 |
28
|
eqeq2d |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U ) -> ( U = ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) <-> U = ( Base ` W ) ) ) |
31 |
27 29 30
|
3imtr3d |
|- ( ( ( ph /\ ( v e. ( Base ` W ) /\ ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) ) ) /\ T C. U ) -> ( U C_ ( Base ` W ) -> U = ( Base ` W ) ) ) |
32 |
31
|
exp42 |
|- ( ph -> ( v e. ( Base ` W ) -> ( ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) -> ( T C. U -> ( U C_ ( Base ` W ) -> U = ( Base ` W ) ) ) ) ) ) |
33 |
32
|
rexlimdv |
|- ( ph -> ( E. v e. ( Base ` W ) ( T ( LSSum ` W ) ( ( LSpan ` W ) ` { v } ) ) = ( Base ` W ) -> ( T C. U -> ( U C_ ( Base ` W ) -> U = ( Base ` W ) ) ) ) ) |
34 |
17 33
|
mpd |
|- ( ph -> ( T C. U -> ( U C_ ( Base ` W ) -> U = ( Base ` W ) ) ) ) |
35 |
12 34
|
mpid |
|- ( ph -> ( T C. U -> U = ( Base ` W ) ) ) |
36 |
35
|
necon3ad |
|- ( ph -> ( U =/= ( Base ` W ) -> -. T C. U ) ) |
37 |
8 36
|
mpd |
|- ( ph -> -. T C. U ) |
38 |
|
df-pss |
|- ( T C. U <-> ( T C_ U /\ T =/= U ) ) |
39 |
38
|
simplbi2 |
|- ( T C_ U -> ( T =/= U -> T C. U ) ) |
40 |
39
|
necon1bd |
|- ( T C_ U -> ( -. T C. U -> T = U ) ) |
41 |
37 40
|
syl5com |
|- ( ph -> ( T C_ U -> T = U ) ) |
42 |
|
eqimss |
|- ( T = U -> T C_ U ) |
43 |
41 42
|
impbid1 |
|- ( ph -> ( T C_ U <-> T = U ) ) |