Metamath Proof Explorer


Theorem lshpinN

Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpin.h
|- H = ( LSHyp ` W )
lshpin.w
|- ( ph -> W e. LVec )
lshpin.t
|- ( ph -> T e. H )
lshpin.u
|- ( ph -> U e. H )
Assertion lshpinN
|- ( ph -> ( ( T i^i U ) e. H <-> T = U ) )

Proof

Step Hyp Ref Expression
1 lshpin.h
 |-  H = ( LSHyp ` W )
2 lshpin.w
 |-  ( ph -> W e. LVec )
3 lshpin.t
 |-  ( ph -> T e. H )
4 lshpin.u
 |-  ( ph -> U e. H )
5 inss1
 |-  ( T i^i U ) C_ T
6 2 adantr
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> W e. LVec )
7 simpr
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) e. H )
8 3 adantr
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> T e. H )
9 1 6 7 8 lshpcmp
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> ( ( T i^i U ) C_ T <-> ( T i^i U ) = T ) )
10 5 9 mpbii
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) = T )
11 inss2
 |-  ( T i^i U ) C_ U
12 4 adantr
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> U e. H )
13 1 6 7 12 lshpcmp
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> ( ( T i^i U ) C_ U <-> ( T i^i U ) = U ) )
14 11 13 mpbii
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) = U )
15 10 14 eqtr3d
 |-  ( ( ph /\ ( T i^i U ) e. H ) -> T = U )
16 15 ex
 |-  ( ph -> ( ( T i^i U ) e. H -> T = U ) )
17 inidm
 |-  ( T i^i T ) = T
18 17 3 eqeltrid
 |-  ( ph -> ( T i^i T ) e. H )
19 ineq2
 |-  ( T = U -> ( T i^i T ) = ( T i^i U ) )
20 19 eleq1d
 |-  ( T = U -> ( ( T i^i T ) e. H <-> ( T i^i U ) e. H ) )
21 18 20 syl5ibcom
 |-  ( ph -> ( T = U -> ( T i^i U ) e. H ) )
22 16 21 impbid
 |-  ( ph -> ( ( T i^i U ) e. H <-> T = U ) )