Step |
Hyp |
Ref |
Expression |
1 |
|
lshpin.h |
|- H = ( LSHyp ` W ) |
2 |
|
lshpin.w |
|- ( ph -> W e. LVec ) |
3 |
|
lshpin.t |
|- ( ph -> T e. H ) |
4 |
|
lshpin.u |
|- ( ph -> U e. H ) |
5 |
|
inss1 |
|- ( T i^i U ) C_ T |
6 |
2
|
adantr |
|- ( ( ph /\ ( T i^i U ) e. H ) -> W e. LVec ) |
7 |
|
simpr |
|- ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) e. H ) |
8 |
3
|
adantr |
|- ( ( ph /\ ( T i^i U ) e. H ) -> T e. H ) |
9 |
1 6 7 8
|
lshpcmp |
|- ( ( ph /\ ( T i^i U ) e. H ) -> ( ( T i^i U ) C_ T <-> ( T i^i U ) = T ) ) |
10 |
5 9
|
mpbii |
|- ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) = T ) |
11 |
|
inss2 |
|- ( T i^i U ) C_ U |
12 |
4
|
adantr |
|- ( ( ph /\ ( T i^i U ) e. H ) -> U e. H ) |
13 |
1 6 7 12
|
lshpcmp |
|- ( ( ph /\ ( T i^i U ) e. H ) -> ( ( T i^i U ) C_ U <-> ( T i^i U ) = U ) ) |
14 |
11 13
|
mpbii |
|- ( ( ph /\ ( T i^i U ) e. H ) -> ( T i^i U ) = U ) |
15 |
10 14
|
eqtr3d |
|- ( ( ph /\ ( T i^i U ) e. H ) -> T = U ) |
16 |
15
|
ex |
|- ( ph -> ( ( T i^i U ) e. H -> T = U ) ) |
17 |
|
inidm |
|- ( T i^i T ) = T |
18 |
17 3
|
eqeltrid |
|- ( ph -> ( T i^i T ) e. H ) |
19 |
|
ineq2 |
|- ( T = U -> ( T i^i T ) = ( T i^i U ) ) |
20 |
19
|
eleq1d |
|- ( T = U -> ( ( T i^i T ) e. H <-> ( T i^i U ) e. H ) ) |
21 |
18 20
|
syl5ibcom |
|- ( ph -> ( T = U -> ( T i^i U ) e. H ) ) |
22 |
16 21
|
impbid |
|- ( ph -> ( ( T i^i U ) e. H <-> T = U ) ) |