| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfl1dim.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lfl1dim.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
lfl1dim.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
| 4 |
|
lfl1dim.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
| 5 |
|
lfl1dim.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
| 6 |
|
lfl1dim.t |
⊢ · = ( .r ‘ 𝐷 ) |
| 7 |
|
lfl1dim.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 8 |
|
lfl1dim.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
| 12 |
2 5 11
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 13 |
10 12
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 16 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑊 ∈ LMod ) |
| 17 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐺 ∈ 𝐹 ) |
| 18 |
1 2 3 5 6 11 16 17
|
lfl0sc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 19 |
15 18
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 20 |
|
sneq |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → { 𝑘 } = { ( 0g ‘ 𝐷 ) } ) |
| 21 |
20
|
xpeq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝑉 × { 𝑘 } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 23 |
22
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝐷 ) ∈ 𝐾 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 24 |
14 19 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 25 |
24
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 26 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
| 27 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LMod ) |
| 28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
| 29 |
1 3 4 27 28
|
lkrssv |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) |
| 30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝐺 ∈ 𝐹 ) |
| 32 |
2 11 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 34 |
33
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
| 35 |
34
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 36 |
35
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) |
| 37 |
29 36
|
eqssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) = 𝑉 ) |
| 38 |
2 11 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 39 |
27 28 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 40 |
37 39
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 41 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
| 42 |
1 2 3 5 6 11 27 41
|
lfl0sc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 43 |
40 42
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
| 44 |
26 43 23
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 45 |
44
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 46 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
| 47 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑊 ∈ LVec ) |
| 48 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ∈ 𝐹 ) |
| 49 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 50 |
1 2 11 46 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ∈ 𝐹 ) |
| 53 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
| 54 |
1 2 11 46 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 55 |
47 52 53 54
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
| 56 |
46 47 51 55
|
lshpcmp |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) ) |
| 57 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LVec ) |
| 58 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
| 59 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
| 60 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) |
| 61 |
2 5 6 1 3 4
|
eqlkr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 62 |
57 58 59 60 61
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
| 63 |
62
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 64 |
56 63
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 65 |
25 45 64
|
pm2.61da2ne |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 66 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LVec ) |
| 67 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝐺 ∈ 𝐹 ) |
| 68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) |
| 69 |
1 2 5 6 3 4 66 67 68
|
lkrscss |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 70 |
69
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 71 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝑔 ) = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 72 |
71
|
sseq2d |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
| 73 |
72
|
biimprcd |
⊢ ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 74 |
70 73
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) ) |
| 75 |
74
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
| 76 |
65 75
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
| 77 |
76
|
rabbidva |
⊢ ( 𝜑 → { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∈ 𝐹 ∣ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) } ) |