Step |
Hyp |
Ref |
Expression |
1 |
|
lfl1dim.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lfl1dim.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
3 |
|
lfl1dim.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
lfl1dim.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
5 |
|
lfl1dim.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
6 |
|
lfl1dim.t |
⊢ · = ( .r ‘ 𝐷 ) |
7 |
|
lfl1dim.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
lfl1dim.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
12 |
2 5 11
|
lmod0cl |
⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
16 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑊 ∈ LMod ) |
17 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝐺 ∈ 𝐹 ) |
18 |
1 2 3 5 6 11 16 17
|
lfl0sc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
19 |
15 18
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
20 |
|
sneq |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → { 𝑘 } = { ( 0g ‘ 𝐷 ) } ) |
21 |
20
|
xpeq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝑉 × { 𝑘 } ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑘 = ( 0g ‘ 𝐷 ) → ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
23 |
22
|
rspceeqv |
⊢ ( ( ( 0g ‘ 𝐷 ) ∈ 𝐾 ∧ 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
24 |
14 19 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
25 |
24
|
a1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
26 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 0g ‘ 𝐷 ) ∈ 𝐾 ) |
27 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LMod ) |
28 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
29 |
1 3 4 27 28
|
lkrssv |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) ⊆ 𝑉 ) |
30 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝑊 ∈ LMod ) |
31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → 𝐺 ∈ 𝐹 ) |
32 |
2 11 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) = 𝑉 ↔ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
34 |
33
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) = 𝑉 ) |
35 |
34
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
36 |
35
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑉 ⊆ ( 𝐿 ‘ 𝑔 ) ) |
37 |
29 36
|
eqssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝑔 ) = 𝑉 ) |
38 |
2 11 1 3 4
|
lkr0f |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
39 |
27 28 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( ( 𝐿 ‘ 𝑔 ) = 𝑉 ↔ 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
40 |
37 39
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
41 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
42 |
1 2 3 5 6 11 27 41
|
lfl0sc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
43 |
40 42
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) |
44 |
26 43 23
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ∧ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
45 |
44
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝐺 = ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
46 |
|
eqid |
⊢ ( LSHyp ‘ 𝑊 ) = ( LSHyp ‘ 𝑊 ) |
47 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑊 ∈ LVec ) |
48 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ∈ 𝐹 ) |
49 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
50 |
1 2 11 46 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
51 |
47 48 49 50
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝐺 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
52 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ∈ 𝐹 ) |
53 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) |
54 |
1 2 11 46 3 4
|
lkrshp |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝑔 ∈ 𝐹 ∧ 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
55 |
47 52 53 54
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( 𝐿 ‘ 𝑔 ) ∈ ( LSHyp ‘ 𝑊 ) ) |
56 |
46 47 51 55
|
lshpcmp |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) ) |
57 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑊 ∈ LVec ) |
58 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝐺 ∈ 𝐹 ) |
59 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → 𝑔 ∈ 𝐹 ) |
60 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) |
61 |
2 5 6 1 3 4
|
eqlkr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
62 |
57 58 59 60 61
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) ∧ ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) |
63 |
62
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) = ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
64 |
56 63
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ ( 𝑔 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ∧ 𝐺 ≠ ( 𝑉 × { ( 0g ‘ 𝐷 ) } ) ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
65 |
25 45 64
|
pm2.61da2ne |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) → ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
66 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑊 ∈ LVec ) |
67 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝐺 ∈ 𝐹 ) |
68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → 𝑘 ∈ 𝐾 ) |
69 |
1 2 5 6 3 4 66 67 68
|
lkrscss |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) ∧ 𝑘 ∈ 𝐾 ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
70 |
69
|
ex |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝑔 ) = ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
72 |
71
|
sseq2d |
⊢ ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) ) |
73 |
72
|
biimprcd |
⊢ ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
74 |
70 73
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( 𝑘 ∈ 𝐾 → ( 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) ) |
75 |
74
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) → ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ) ) |
76 |
65 75
|
impbid |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐹 ) → ( ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) ↔ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) ) ) |
77 |
76
|
rabbidva |
⊢ ( 𝜑 → { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∈ 𝐹 ∣ ∃ 𝑘 ∈ 𝐾 𝑔 = ( 𝐺 ∘f · ( 𝑉 × { 𝑘 } ) ) } ) |