Metamath Proof Explorer


Theorem lfl1dim2N

Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. TODO: delete this if not useful; lfl1dim may be more compatible with lspsn . (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lfl1dim.v V = Base W
lfl1dim.d D = Scalar W
lfl1dim.f F = LFnl W
lfl1dim.l L = LKer W
lfl1dim.k K = Base D
lfl1dim.t · ˙ = D
lfl1dim.w φ W LVec
lfl1dim.g φ G F
Assertion lfl1dim2N φ g F | L G L g = g F | k K g = G · ˙ f V × k

Proof

Step Hyp Ref Expression
1 lfl1dim.v V = Base W
2 lfl1dim.d D = Scalar W
3 lfl1dim.f F = LFnl W
4 lfl1dim.l L = LKer W
5 lfl1dim.k K = Base D
6 lfl1dim.t · ˙ = D
7 lfl1dim.w φ W LVec
8 lfl1dim.g φ G F
9 lveclmod W LVec W LMod
10 7 9 syl φ W LMod
11 eqid 0 D = 0 D
12 2 5 11 lmod0cl W LMod 0 D K
13 10 12 syl φ 0 D K
14 13 ad2antrr φ g F g = V × 0 D 0 D K
15 simpr φ g F g = V × 0 D g = V × 0 D
16 10 ad2antrr φ g F g = V × 0 D W LMod
17 8 ad2antrr φ g F g = V × 0 D G F
18 1 2 3 5 6 11 16 17 lfl0sc φ g F g = V × 0 D G · ˙ f V × 0 D = V × 0 D
19 15 18 eqtr4d φ g F g = V × 0 D g = G · ˙ f V × 0 D
20 sneq k = 0 D k = 0 D
21 20 xpeq2d k = 0 D V × k = V × 0 D
22 21 oveq2d k = 0 D G · ˙ f V × k = G · ˙ f V × 0 D
23 22 rspceeqv 0 D K g = G · ˙ f V × 0 D k K g = G · ˙ f V × k
24 14 19 23 syl2anc φ g F g = V × 0 D k K g = G · ˙ f V × k
25 24 a1d φ g F g = V × 0 D L G L g k K g = G · ˙ f V × k
26 13 ad3antrrr φ g F G = V × 0 D L G L g 0 D K
27 10 ad3antrrr φ g F G = V × 0 D L G L g W LMod
28 simpllr φ g F G = V × 0 D L G L g g F
29 1 3 4 27 28 lkrssv φ g F G = V × 0 D L G L g L g V
30 10 adantr φ g F W LMod
31 8 adantr φ g F G F
32 2 11 1 3 4 lkr0f W LMod G F L G = V G = V × 0 D
33 30 31 32 syl2anc φ g F L G = V G = V × 0 D
34 33 biimpar φ g F G = V × 0 D L G = V
35 34 sseq1d φ g F G = V × 0 D L G L g V L g
36 35 biimpa φ g F G = V × 0 D L G L g V L g
37 29 36 eqssd φ g F G = V × 0 D L G L g L g = V
38 2 11 1 3 4 lkr0f W LMod g F L g = V g = V × 0 D
39 27 28 38 syl2anc φ g F G = V × 0 D L G L g L g = V g = V × 0 D
40 37 39 mpbid φ g F G = V × 0 D L G L g g = V × 0 D
41 8 ad3antrrr φ g F G = V × 0 D L G L g G F
42 1 2 3 5 6 11 27 41 lfl0sc φ g F G = V × 0 D L G L g G · ˙ f V × 0 D = V × 0 D
43 40 42 eqtr4d φ g F G = V × 0 D L G L g g = G · ˙ f V × 0 D
44 26 43 23 syl2anc φ g F G = V × 0 D L G L g k K g = G · ˙ f V × k
45 44 ex φ g F G = V × 0 D L G L g k K g = G · ˙ f V × k
46 eqid LSHyp W = LSHyp W
47 7 ad2antrr φ g F g V × 0 D G V × 0 D W LVec
48 8 ad2antrr φ g F g V × 0 D G V × 0 D G F
49 simprr φ g F g V × 0 D G V × 0 D G V × 0 D
50 1 2 11 46 3 4 lkrshp W LVec G F G V × 0 D L G LSHyp W
51 47 48 49 50 syl3anc φ g F g V × 0 D G V × 0 D L G LSHyp W
52 simplr φ g F g V × 0 D G V × 0 D g F
53 simprl φ g F g V × 0 D G V × 0 D g V × 0 D
54 1 2 11 46 3 4 lkrshp W LVec g F g V × 0 D L g LSHyp W
55 47 52 53 54 syl3anc φ g F g V × 0 D G V × 0 D L g LSHyp W
56 46 47 51 55 lshpcmp φ g F g V × 0 D G V × 0 D L G L g L G = L g
57 7 ad3antrrr φ g F g V × 0 D G V × 0 D L G = L g W LVec
58 8 ad3antrrr φ g F g V × 0 D G V × 0 D L G = L g G F
59 simpllr φ g F g V × 0 D G V × 0 D L G = L g g F
60 simpr φ g F g V × 0 D G V × 0 D L G = L g L G = L g
61 2 5 6 1 3 4 eqlkr2 W LVec G F g F L G = L g k K g = G · ˙ f V × k
62 57 58 59 60 61 syl121anc φ g F g V × 0 D G V × 0 D L G = L g k K g = G · ˙ f V × k
63 62 ex φ g F g V × 0 D G V × 0 D L G = L g k K g = G · ˙ f V × k
64 56 63 sylbid φ g F g V × 0 D G V × 0 D L G L g k K g = G · ˙ f V × k
65 25 45 64 pm2.61da2ne φ g F L G L g k K g = G · ˙ f V × k
66 7 ad2antrr φ g F k K W LVec
67 8 ad2antrr φ g F k K G F
68 simpr φ g F k K k K
69 1 2 5 6 3 4 66 67 68 lkrscss φ g F k K L G L G · ˙ f V × k
70 69 ex φ g F k K L G L G · ˙ f V × k
71 fveq2 g = G · ˙ f V × k L g = L G · ˙ f V × k
72 71 sseq2d g = G · ˙ f V × k L G L g L G L G · ˙ f V × k
73 72 biimprcd L G L G · ˙ f V × k g = G · ˙ f V × k L G L g
74 70 73 syl6 φ g F k K g = G · ˙ f V × k L G L g
75 74 rexlimdv φ g F k K g = G · ˙ f V × k L G L g
76 65 75 impbid φ g F L G L g k K g = G · ˙ f V × k
77 76 rabbidva φ g F | L G L g = g F | k K g = G · ˙ f V × k