Step |
Hyp |
Ref |
Expression |
1 |
|
lfl1dim.v |
|
2 |
|
lfl1dim.d |
|
3 |
|
lfl1dim.f |
|
4 |
|
lfl1dim.l |
|
5 |
|
lfl1dim.k |
|
6 |
|
lfl1dim.t |
|
7 |
|
lfl1dim.w |
|
8 |
|
lfl1dim.g |
|
9 |
|
lveclmod |
|
10 |
7 9
|
syl |
|
11 |
|
eqid |
|
12 |
2 5 11
|
lmod0cl |
|
13 |
10 12
|
syl |
|
14 |
13
|
ad2antrr |
|
15 |
|
simpr |
|
16 |
10
|
ad2antrr |
|
17 |
8
|
ad2antrr |
|
18 |
1 2 3 5 6 11 16 17
|
lfl0sc |
|
19 |
15 18
|
eqtr4d |
|
20 |
|
sneq |
|
21 |
20
|
xpeq2d |
|
22 |
21
|
oveq2d |
|
23 |
22
|
rspceeqv |
|
24 |
14 19 23
|
syl2anc |
|
25 |
24
|
a1d |
|
26 |
13
|
ad3antrrr |
|
27 |
10
|
ad3antrrr |
|
28 |
|
simpllr |
|
29 |
1 3 4 27 28
|
lkrssv |
|
30 |
10
|
adantr |
|
31 |
8
|
adantr |
|
32 |
2 11 1 3 4
|
lkr0f |
|
33 |
30 31 32
|
syl2anc |
|
34 |
33
|
biimpar |
|
35 |
34
|
sseq1d |
|
36 |
35
|
biimpa |
|
37 |
29 36
|
eqssd |
|
38 |
2 11 1 3 4
|
lkr0f |
|
39 |
27 28 38
|
syl2anc |
|
40 |
37 39
|
mpbid |
|
41 |
8
|
ad3antrrr |
|
42 |
1 2 3 5 6 11 27 41
|
lfl0sc |
|
43 |
40 42
|
eqtr4d |
|
44 |
26 43 23
|
syl2anc |
|
45 |
44
|
ex |
|
46 |
|
eqid |
|
47 |
7
|
ad2antrr |
|
48 |
8
|
ad2antrr |
|
49 |
|
simprr |
|
50 |
1 2 11 46 3 4
|
lkrshp |
|
51 |
47 48 49 50
|
syl3anc |
|
52 |
|
simplr |
|
53 |
|
simprl |
|
54 |
1 2 11 46 3 4
|
lkrshp |
|
55 |
47 52 53 54
|
syl3anc |
|
56 |
46 47 51 55
|
lshpcmp |
|
57 |
7
|
ad3antrrr |
|
58 |
8
|
ad3antrrr |
|
59 |
|
simpllr |
|
60 |
|
simpr |
|
61 |
2 5 6 1 3 4
|
eqlkr2 |
|
62 |
57 58 59 60 61
|
syl121anc |
|
63 |
62
|
ex |
|
64 |
56 63
|
sylbid |
|
65 |
25 45 64
|
pm2.61da2ne |
|
66 |
7
|
ad2antrr |
|
67 |
8
|
ad2antrr |
|
68 |
|
simpr |
|
69 |
1 2 5 6 3 4 66 67 68
|
lkrscss |
|
70 |
69
|
ex |
|
71 |
|
fveq2 |
|
72 |
71
|
sseq2d |
|
73 |
72
|
biimprcd |
|
74 |
70 73
|
syl6 |
|
75 |
74
|
rexlimdv |
|
76 |
65 75
|
impbid |
|
77 |
76
|
rabbidva |
|