Metamath Proof Explorer


Theorem lshpset2N

Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpset2.v V=BaseW
lshpset2.d D=ScalarW
lshpset2.z 0˙=0D
lshpset2.h H=LSHypW
lshpset2.f F=LFnlW
lshpset2.k K=LKerW
Assertion lshpset2N WLVecH=s|gFgV×0˙s=Kg

Proof

Step Hyp Ref Expression
1 lshpset2.v V=BaseW
2 lshpset2.d D=ScalarW
3 lshpset2.z 0˙=0D
4 lshpset2.h H=LSHypW
5 lshpset2.f F=LFnlW
6 lshpset2.k K=LKerW
7 4 5 6 lshpkrex WLVecsHgFKg=s
8 eleq1 Kg=sKgHsH
9 8 biimparc sHKg=sKgH
10 9 adantll WLVecsHKg=sKgH
11 10 adantlr WLVecsHgFKg=sKgH
12 simplll WLVecsHgFKg=sWLVec
13 simplr WLVecsHgFKg=sgF
14 1 2 3 4 5 6 12 13 lkrshp3 WLVecsHgFKg=sKgHgV×0˙
15 11 14 mpbid WLVecsHgFKg=sgV×0˙
16 15 ex WLVecsHgFKg=sgV×0˙
17 eqimss2 Kg=ssKg
18 eqimss Kg=sKgs
19 17 18 eqssd Kg=ss=Kg
20 19 a1i WLVecsHgFKg=ss=Kg
21 16 20 jcad WLVecsHgFKg=sgV×0˙s=Kg
22 21 reximdva WLVecsHgFKg=sgFgV×0˙s=Kg
23 7 22 mpd WLVecsHgFgV×0˙s=Kg
24 23 ex WLVecsHgFgV×0˙s=Kg
25 1 2 3 4 5 6 lkrshp WLVecgFgV×0˙KgH
26 25 3adant3r WLVecgFgV×0˙s=KgKgH
27 eqid LSpanW=LSpanW
28 eqid LSubSpW=LSubSpW
29 1 27 28 4 islshp WLVecKgHKgLSubSpWKgVvVLSpanWKgv=V
30 29 3ad2ant1 WLVecgFgV×0˙s=KgKgHKgLSubSpWKgVvVLSpanWKgv=V
31 26 30 mpbid WLVecgFgV×0˙s=KgKgLSubSpWKgVvVLSpanWKgv=V
32 eleq1 s=KgsLSubSpWKgLSubSpW
33 neeq1 s=KgsVKgV
34 uneq1 s=Kgsv=Kgv
35 34 fveqeq2d s=KgLSpanWsv=VLSpanWKgv=V
36 35 rexbidv s=KgvVLSpanWsv=VvVLSpanWKgv=V
37 32 33 36 3anbi123d s=KgsLSubSpWsVvVLSpanWsv=VKgLSubSpWKgVvVLSpanWKgv=V
38 37 adantl gV×0˙s=KgsLSubSpWsVvVLSpanWsv=VKgLSubSpWKgVvVLSpanWKgv=V
39 38 3ad2ant3 WLVecgFgV×0˙s=KgsLSubSpWsVvVLSpanWsv=VKgLSubSpWKgVvVLSpanWKgv=V
40 31 39 mpbird WLVecgFgV×0˙s=KgsLSubSpWsVvVLSpanWsv=V
41 40 rexlimdv3a WLVecgFgV×0˙s=KgsLSubSpWsVvVLSpanWsv=V
42 1 27 28 4 islshp WLVecsHsLSubSpWsVvVLSpanWsv=V
43 41 42 sylibrd WLVecgFgV×0˙s=KgsH
44 24 43 impbid WLVecsHgFgV×0˙s=Kg
45 44 eqabdv WLVecH=s|gFgV×0˙s=Kg