Description: The set of all hyperplanes of a left module or left vector space equals the set of all kernels of nonzero functionals. (Contributed by NM, 17-Jul-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpset2.v | |
|
lshpset2.d | |
||
lshpset2.z | |
||
lshpset2.h | |
||
lshpset2.f | |
||
lshpset2.k | |
||
Assertion | lshpset2N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpset2.v | |
|
2 | lshpset2.d | |
|
3 | lshpset2.z | |
|
4 | lshpset2.h | |
|
5 | lshpset2.f | |
|
6 | lshpset2.k | |
|
7 | 4 5 6 | lshpkrex | |
8 | eleq1 | |
|
9 | 8 | biimparc | |
10 | 9 | adantll | |
11 | 10 | adantlr | |
12 | simplll | |
|
13 | simplr | |
|
14 | 1 2 3 4 5 6 12 13 | lkrshp3 | |
15 | 11 14 | mpbid | |
16 | 15 | ex | |
17 | eqimss2 | |
|
18 | eqimss | |
|
19 | 17 18 | eqssd | |
20 | 19 | a1i | |
21 | 16 20 | jcad | |
22 | 21 | reximdva | |
23 | 7 22 | mpd | |
24 | 23 | ex | |
25 | 1 2 3 4 5 6 | lkrshp | |
26 | 25 | 3adant3r | |
27 | eqid | |
|
28 | eqid | |
|
29 | 1 27 28 4 | islshp | |
30 | 29 | 3ad2ant1 | |
31 | 26 30 | mpbid | |
32 | eleq1 | |
|
33 | neeq1 | |
|
34 | uneq1 | |
|
35 | 34 | fveqeq2d | |
36 | 35 | rexbidv | |
37 | 32 33 36 | 3anbi123d | |
38 | 37 | adantl | |
39 | 38 | 3ad2ant3 | |
40 | 31 39 | mpbird | |
41 | 40 | rexlimdv3a | |
42 | 1 27 28 4 | islshp | |
43 | 41 42 | sylibrd | |
44 | 24 43 | impbid | |
45 | 44 | eqabdv | |