Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkr.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpkr.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lshpkr.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lshpkr.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
5 |
|
lshpkr.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
6 |
|
lshpkr.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lshpkr.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
8 |
|
lshpkr.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
9 |
|
lshpkr.e |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 ) |
10 |
|
lshpkr.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
11 |
|
lshpkr.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
12 |
|
lshpkr.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
13 |
|
lshpkr.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
14 |
|
lshpkr.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 ) |
16 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 15
|
lshpkrcl |
⊢ ( 𝜑 → 𝐺 ∈ ( LFnl ‘ 𝑊 ) ) |
19 |
1 15 14 17 18
|
lkrssv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) ⊆ 𝑉 ) |
20 |
19
|
sseld |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) → 𝑣 ∈ 𝑉 ) ) |
21 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
22 |
21 5 17 7
|
lshplss |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
23 |
1 21
|
lssel |
⊢ ( ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑉 ) |
24 |
22 23
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑉 ) |
25 |
24
|
ex |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑈 → 𝑣 ∈ 𝑉 ) ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝐷 ) = ( 0g ‘ 𝐷 ) |
27 |
1 10 26 15 14
|
ellkr |
⊢ ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ ( LFnl ‘ 𝑊 ) ) → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 0g ‘ 𝐷 ) ) ) ) |
28 |
6 18 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ ( 𝑣 ∈ 𝑉 ∧ ( 𝐺 ‘ 𝑣 ) = ( 0g ‘ 𝐷 ) ) ) ) |
29 |
28
|
baibd |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ ( 𝐺 ‘ 𝑣 ) = ( 0g ‘ 𝐷 ) ) ) |
30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑊 ∈ LVec ) |
31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑈 ∈ 𝐻 ) |
32 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑍 ∈ 𝑉 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 ) |
35 |
1 2 3 4 5 30 31 32 33 34 10 11 12 26 13
|
lshpkrlem1 |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ∈ 𝑈 ↔ ( 𝐺 ‘ 𝑣 ) = ( 0g ‘ 𝐷 ) ) ) |
36 |
29 35
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ 𝑣 ∈ 𝑈 ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑉 → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ 𝑣 ∈ 𝑈 ) ) ) |
38 |
20 25 37
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝐿 ‘ 𝐺 ) ↔ 𝑣 ∈ 𝑈 ) ) |
39 |
38
|
eqrdv |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝐺 ) = 𝑈 ) |