| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lshpkr.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lshpkr.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lshpkr.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑊 ) | 
						
							| 4 |  | lshpkr.p | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 5 |  | lshpkr.h | ⊢ 𝐻  =  ( LSHyp ‘ 𝑊 ) | 
						
							| 6 |  | lshpkr.w | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) | 
						
							| 7 |  | lshpkr.u | ⊢ ( 𝜑  →  𝑈  ∈  𝐻 ) | 
						
							| 8 |  | lshpkr.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 9 |  | lshpkr.e | ⊢ ( 𝜑  →  ( 𝑈  ⊕  ( 𝑁 ‘ { 𝑍 } ) )  =  𝑉 ) | 
						
							| 10 |  | lshpkr.d | ⊢ 𝐷  =  ( Scalar ‘ 𝑊 ) | 
						
							| 11 |  | lshpkr.k | ⊢ 𝐾  =  ( Base ‘ 𝐷 ) | 
						
							| 12 |  | lshpkr.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 13 |  | lshpkr.g | ⊢ 𝐺  =  ( 𝑥  ∈  𝑉  ↦  ( ℩ 𝑘  ∈  𝐾 ∃ 𝑦  ∈  𝑈 𝑥  =  ( 𝑦  +  ( 𝑘  ·  𝑍 ) ) ) ) | 
						
							| 14 |  | lshpkr.l | ⊢ 𝐿  =  ( LKer ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( LFnl ‘ 𝑊 )  =  ( LFnl ‘ 𝑊 ) | 
						
							| 16 |  | lveclmod | ⊢ ( 𝑊  ∈  LVec  →  𝑊  ∈  LMod ) | 
						
							| 17 | 6 16 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 15 | lshpkrcl | ⊢ ( 𝜑  →  𝐺  ∈  ( LFnl ‘ 𝑊 ) ) | 
						
							| 19 | 1 15 14 17 18 | lkrssv | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  ⊆  𝑉 ) | 
						
							| 20 | 19 | sseld | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  →  𝑣  ∈  𝑉 ) ) | 
						
							| 21 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 22 | 21 5 17 7 | lshplss | ⊢ ( 𝜑  →  𝑈  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 23 | 1 21 | lssel | ⊢ ( ( 𝑈  ∈  ( LSubSp ‘ 𝑊 )  ∧  𝑣  ∈  𝑈 )  →  𝑣  ∈  𝑉 ) | 
						
							| 24 | 22 23 | sylan | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑈 )  →  𝑣  ∈  𝑉 ) | 
						
							| 25 | 24 | ex | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝑈  →  𝑣  ∈  𝑉 ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝐷 )  =  ( 0g ‘ 𝐷 ) | 
						
							| 27 | 1 10 26 15 14 | ellkr | ⊢ ( ( 𝑊  ∈  LVec  ∧  𝐺  ∈  ( LFnl ‘ 𝑊 ) )  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  ( 𝑣  ∈  𝑉  ∧  ( 𝐺 ‘ 𝑣 )  =  ( 0g ‘ 𝐷 ) ) ) ) | 
						
							| 28 | 6 18 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  ( 𝑣  ∈  𝑉  ∧  ( 𝐺 ‘ 𝑣 )  =  ( 0g ‘ 𝐷 ) ) ) ) | 
						
							| 29 | 28 | baibd | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  ( 𝐺 ‘ 𝑣 )  =  ( 0g ‘ 𝐷 ) ) ) | 
						
							| 30 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑊  ∈  LVec ) | 
						
							| 31 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑈  ∈  𝐻 ) | 
						
							| 32 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑍  ∈  𝑉 ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 ) | 
						
							| 34 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝑈  ⊕  ( 𝑁 ‘ { 𝑍 } ) )  =  𝑉 ) | 
						
							| 35 | 1 2 3 4 5 30 31 32 33 34 10 11 12 26 13 | lshpkrlem1 | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝑣  ∈  𝑈  ↔  ( 𝐺 ‘ 𝑣 )  =  ( 0g ‘ 𝐷 ) ) ) | 
						
							| 36 | 29 35 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑣  ∈  𝑉 )  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  𝑣  ∈  𝑈 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( 𝑣  ∈  𝑉  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  𝑣  ∈  𝑈 ) ) ) | 
						
							| 38 | 20 25 37 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝑣  ∈  ( 𝐿 ‘ 𝐺 )  ↔  𝑣  ∈  𝑈 ) ) | 
						
							| 39 | 38 | eqrdv | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐺 )  =  𝑈 ) |