Metamath Proof Explorer


Theorem lshpkr

Description: The kernel of functional G is the hyperplane defining it. (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lshpkr.v 𝑉 = ( Base ‘ 𝑊 )
lshpkr.a + = ( +g𝑊 )
lshpkr.n 𝑁 = ( LSpan ‘ 𝑊 )
lshpkr.p = ( LSSum ‘ 𝑊 )
lshpkr.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpkr.w ( 𝜑𝑊 ∈ LVec )
lshpkr.u ( 𝜑𝑈𝐻 )
lshpkr.z ( 𝜑𝑍𝑉 )
lshpkr.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
lshpkr.d 𝐷 = ( Scalar ‘ 𝑊 )
lshpkr.k 𝐾 = ( Base ‘ 𝐷 )
lshpkr.t · = ( ·𝑠𝑊 )
lshpkr.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
lshpkr.l 𝐿 = ( LKer ‘ 𝑊 )
Assertion lshpkr ( 𝜑 → ( 𝐿𝐺 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 lshpkr.v 𝑉 = ( Base ‘ 𝑊 )
2 lshpkr.a + = ( +g𝑊 )
3 lshpkr.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lshpkr.p = ( LSSum ‘ 𝑊 )
5 lshpkr.h 𝐻 = ( LSHyp ‘ 𝑊 )
6 lshpkr.w ( 𝜑𝑊 ∈ LVec )
7 lshpkr.u ( 𝜑𝑈𝐻 )
8 lshpkr.z ( 𝜑𝑍𝑉 )
9 lshpkr.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
10 lshpkr.d 𝐷 = ( Scalar ‘ 𝑊 )
11 lshpkr.k 𝐾 = ( Base ‘ 𝐷 )
12 lshpkr.t · = ( ·𝑠𝑊 )
13 lshpkr.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
14 lshpkr.l 𝐿 = ( LKer ‘ 𝑊 )
15 eqid ( LFnl ‘ 𝑊 ) = ( LFnl ‘ 𝑊 )
16 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
17 6 16 syl ( 𝜑𝑊 ∈ LMod )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 15 lshpkrcl ( 𝜑𝐺 ∈ ( LFnl ‘ 𝑊 ) )
19 1 15 14 17 18 lkrssv ( 𝜑 → ( 𝐿𝐺 ) ⊆ 𝑉 )
20 19 sseld ( 𝜑 → ( 𝑣 ∈ ( 𝐿𝐺 ) → 𝑣𝑉 ) )
21 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
22 21 5 17 7 lshplss ( 𝜑𝑈 ∈ ( LSubSp ‘ 𝑊 ) )
23 1 21 lssel ( ( 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ 𝑣𝑈 ) → 𝑣𝑉 )
24 22 23 sylan ( ( 𝜑𝑣𝑈 ) → 𝑣𝑉 )
25 24 ex ( 𝜑 → ( 𝑣𝑈𝑣𝑉 ) )
26 eqid ( 0g𝐷 ) = ( 0g𝐷 )
27 1 10 26 15 14 ellkr ( ( 𝑊 ∈ LVec ∧ 𝐺 ∈ ( LFnl ‘ 𝑊 ) ) → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ ( 𝑣𝑉 ∧ ( 𝐺𝑣 ) = ( 0g𝐷 ) ) ) )
28 6 18 27 syl2anc ( 𝜑 → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ ( 𝑣𝑉 ∧ ( 𝐺𝑣 ) = ( 0g𝐷 ) ) ) )
29 28 baibd ( ( 𝜑𝑣𝑉 ) → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ ( 𝐺𝑣 ) = ( 0g𝐷 ) ) )
30 6 adantr ( ( 𝜑𝑣𝑉 ) → 𝑊 ∈ LVec )
31 7 adantr ( ( 𝜑𝑣𝑉 ) → 𝑈𝐻 )
32 8 adantr ( ( 𝜑𝑣𝑉 ) → 𝑍𝑉 )
33 simpr ( ( 𝜑𝑣𝑉 ) → 𝑣𝑉 )
34 9 adantr ( ( 𝜑𝑣𝑉 ) → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
35 1 2 3 4 5 30 31 32 33 34 10 11 12 26 13 lshpkrlem1 ( ( 𝜑𝑣𝑉 ) → ( 𝑣𝑈 ↔ ( 𝐺𝑣 ) = ( 0g𝐷 ) ) )
36 29 35 bitr4d ( ( 𝜑𝑣𝑉 ) → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ 𝑣𝑈 ) )
37 36 ex ( 𝜑 → ( 𝑣𝑉 → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ 𝑣𝑈 ) ) )
38 20 25 37 pm5.21ndd ( 𝜑 → ( 𝑣 ∈ ( 𝐿𝐺 ) ↔ 𝑣𝑈 ) )
39 38 eqrdv ( 𝜑 → ( 𝐿𝐺 ) = 𝑈 )