Metamath Proof Explorer


Theorem lshpkrcl

Description: The set G defined by hyperplane U is a linear functional. (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lshpkr.v 𝑉 = ( Base ‘ 𝑊 )
lshpkr.a + = ( +g𝑊 )
lshpkr.n 𝑁 = ( LSpan ‘ 𝑊 )
lshpkr.p = ( LSSum ‘ 𝑊 )
lshpkr.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpkr.w ( 𝜑𝑊 ∈ LVec )
lshpkr.u ( 𝜑𝑈𝐻 )
lshpkr.z ( 𝜑𝑍𝑉 )
lshpkr.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
lshpkr.d 𝐷 = ( Scalar ‘ 𝑊 )
lshpkr.k 𝐾 = ( Base ‘ 𝐷 )
lshpkr.t · = ( ·𝑠𝑊 )
lshpkr.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
lshpkr.f 𝐹 = ( LFnl ‘ 𝑊 )
Assertion lshpkrcl ( 𝜑𝐺𝐹 )

Proof

Step Hyp Ref Expression
1 lshpkr.v 𝑉 = ( Base ‘ 𝑊 )
2 lshpkr.a + = ( +g𝑊 )
3 lshpkr.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lshpkr.p = ( LSSum ‘ 𝑊 )
5 lshpkr.h 𝐻 = ( LSHyp ‘ 𝑊 )
6 lshpkr.w ( 𝜑𝑊 ∈ LVec )
7 lshpkr.u ( 𝜑𝑈𝐻 )
8 lshpkr.z ( 𝜑𝑍𝑉 )
9 lshpkr.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
10 lshpkr.d 𝐷 = ( Scalar ‘ 𝑊 )
11 lshpkr.k 𝐾 = ( Base ‘ 𝐷 )
12 lshpkr.t · = ( ·𝑠𝑊 )
13 lshpkr.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
14 lshpkr.f 𝐹 = ( LFnl ‘ 𝑊 )
15 6 adantr ( ( 𝜑𝑎𝑉 ) → 𝑊 ∈ LVec )
16 7 adantr ( ( 𝜑𝑎𝑉 ) → 𝑈𝐻 )
17 8 adantr ( ( 𝜑𝑎𝑉 ) → 𝑍𝑉 )
18 simpr ( ( 𝜑𝑎𝑉 ) → 𝑎𝑉 )
19 9 adantr ( ( 𝜑𝑎𝑉 ) → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
20 1 2 3 4 5 15 16 17 18 19 10 11 12 lshpsmreu ( ( 𝜑𝑎𝑉 ) → ∃! 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) )
21 riotacl ( ∃! 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) → ( 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ 𝐾 )
22 20 21 syl ( ( 𝜑𝑎𝑉 ) → ( 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ 𝐾 )
23 eqeq1 ( 𝑥 = 𝑎 → ( 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
24 23 rexbidv ( 𝑥 = 𝑎 → ( ∃ 𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
25 24 riotabidv ( 𝑥 = 𝑎 → ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) = ( 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
26 25 cbvmptv ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) = ( 𝑎𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
27 13 26 eqtri 𝐺 = ( 𝑎𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑎 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
28 22 27 fmptd ( 𝜑𝐺 : 𝑉𝐾 )
29 eqid ( 0g𝐷 ) = ( 0g𝐷 )
30 1 2 3 4 5 6 7 8 8 9 10 11 12 29 13 lshpkrlem6 ( ( 𝜑 ∧ ( 𝑙𝐾𝑢𝑉𝑣𝑉 ) ) → ( 𝐺 ‘ ( ( 𝑙 · 𝑢 ) + 𝑣 ) ) = ( ( 𝑙 ( .r𝐷 ) ( 𝐺𝑢 ) ) ( +g𝐷 ) ( 𝐺𝑣 ) ) )
31 30 ralrimivvva ( 𝜑 → ∀ 𝑙𝐾𝑢𝑉𝑣𝑉 ( 𝐺 ‘ ( ( 𝑙 · 𝑢 ) + 𝑣 ) ) = ( ( 𝑙 ( .r𝐷 ) ( 𝐺𝑢 ) ) ( +g𝐷 ) ( 𝐺𝑣 ) ) )
32 eqid ( +g𝐷 ) = ( +g𝐷 )
33 eqid ( .r𝐷 ) = ( .r𝐷 )
34 1 2 10 12 11 32 33 14 islfl ( 𝑊 ∈ LVec → ( 𝐺𝐹 ↔ ( 𝐺 : 𝑉𝐾 ∧ ∀ 𝑙𝐾𝑢𝑉𝑣𝑉 ( 𝐺 ‘ ( ( 𝑙 · 𝑢 ) + 𝑣 ) ) = ( ( 𝑙 ( .r𝐷 ) ( 𝐺𝑢 ) ) ( +g𝐷 ) ( 𝐺𝑣 ) ) ) ) )
35 6 34 syl ( 𝜑 → ( 𝐺𝐹 ↔ ( 𝐺 : 𝑉𝐾 ∧ ∀ 𝑙𝐾𝑢𝑉𝑣𝑉 ( 𝐺 ‘ ( ( 𝑙 · 𝑢 ) + 𝑣 ) ) = ( ( 𝑙 ( .r𝐷 ) ( 𝐺𝑢 ) ) ( +g𝐷 ) ( 𝐺𝑣 ) ) ) ) )
36 28 31 35 mpbir2and ( 𝜑𝐺𝐹 )