Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkr.v |
|
2 |
|
lshpkr.a |
|
3 |
|
lshpkr.n |
|
4 |
|
lshpkr.p |
|
5 |
|
lshpkr.h |
|
6 |
|
lshpkr.w |
|
7 |
|
lshpkr.u |
|
8 |
|
lshpkr.z |
|
9 |
|
lshpkr.e |
|
10 |
|
lshpkr.d |
|
11 |
|
lshpkr.k |
|
12 |
|
lshpkr.t |
|
13 |
|
lshpkr.g |
|
14 |
|
lshpkr.f |
|
15 |
6
|
adantr |
|
16 |
7
|
adantr |
|
17 |
8
|
adantr |
|
18 |
|
simpr |
|
19 |
9
|
adantr |
|
20 |
1 2 3 4 5 15 16 17 18 19 10 11 12
|
lshpsmreu |
|
21 |
|
riotacl |
|
22 |
20 21
|
syl |
|
23 |
|
eqeq1 |
|
24 |
23
|
rexbidv |
|
25 |
24
|
riotabidv |
|
26 |
25
|
cbvmptv |
|
27 |
13 26
|
eqtri |
|
28 |
22 27
|
fmptd |
|
29 |
|
eqid |
|
30 |
1 2 3 4 5 6 7 8 8 9 10 11 12 29 13
|
lshpkrlem6 |
|
31 |
30
|
ralrimivvva |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
1 2 10 12 11 32 33 14
|
islfl |
|
35 |
6 34
|
syl |
|
36 |
28 31 35
|
mpbir2and |
|