| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpkrlem.v |
|
| 2 |
|
lshpkrlem.a |
|
| 3 |
|
lshpkrlem.n |
|
| 4 |
|
lshpkrlem.p |
|
| 5 |
|
lshpkrlem.h |
|
| 6 |
|
lshpkrlem.w |
|
| 7 |
|
lshpkrlem.u |
|
| 8 |
|
lshpkrlem.z |
|
| 9 |
|
lshpkrlem.x |
|
| 10 |
|
lshpkrlem.e |
|
| 11 |
|
lshpkrlem.d |
|
| 12 |
|
lshpkrlem.k |
|
| 13 |
|
lshpkrlem.t |
|
| 14 |
|
lshpkrlem.o |
|
| 15 |
|
lshpkrlem.g |
|
| 16 |
6
|
adantr |
|
| 17 |
7
|
adantr |
|
| 18 |
8
|
adantr |
|
| 19 |
|
simpr2 |
|
| 20 |
10
|
adantr |
|
| 21 |
1 2 3 4 5 16 17 18 19 20 11 12 13 14 15
|
lshpkrlem3 |
|
| 22 |
|
simpr3 |
|
| 23 |
1 2 3 4 5 16 17 18 22 20 11 12 13 14 15
|
lshpkrlem3 |
|
| 24 |
|
lveclmod |
|
| 25 |
16 24
|
syl |
|
| 26 |
|
simpr1 |
|
| 27 |
1 11 13 12
|
lmodvscl |
|
| 28 |
25 26 19 27
|
syl3anc |
|
| 29 |
1 2
|
lmodvacl |
|
| 30 |
25 28 22 29
|
syl3anc |
|
| 31 |
1 2 3 4 5 16 17 18 30 20 11 12 13 14 15
|
lshpkrlem3 |
|
| 32 |
|
3reeanv |
|
| 33 |
|
simp1l |
|
| 34 |
|
simp1r1 |
|
| 35 |
|
simp1r2 |
|
| 36 |
|
simp1r3 |
|
| 37 |
|
simp2ll |
|
| 38 |
|
simp2lr |
|
| 39 |
|
simp2r |
|
| 40 |
38 39
|
jca |
|
| 41 |
|
simp31 |
|
| 42 |
|
simp32 |
|
| 43 |
|
simp33 |
|
| 44 |
1 2 3 4 5 6 7 8 8 10 11 12 13 14 15
|
lshpkrlem5 |
|
| 45 |
33 34 35 36 37 40 41 42 43 44
|
syl333anc |
|
| 46 |
45
|
3exp |
|
| 47 |
46
|
expdimp |
|
| 48 |
47
|
rexlimdv |
|
| 49 |
48
|
rexlimdvva |
|
| 50 |
32 49
|
biimtrrid |
|
| 51 |
21 23 31 50
|
mp3and |
|