| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lshpkrlem.v |
|
| 2 |
|
lshpkrlem.a |
|
| 3 |
|
lshpkrlem.n |
|
| 4 |
|
lshpkrlem.p |
|
| 5 |
|
lshpkrlem.h |
|
| 6 |
|
lshpkrlem.w |
|
| 7 |
|
lshpkrlem.u |
|
| 8 |
|
lshpkrlem.z |
|
| 9 |
|
lshpkrlem.x |
|
| 10 |
|
lshpkrlem.e |
|
| 11 |
|
lshpkrlem.d |
|
| 12 |
|
lshpkrlem.k |
|
| 13 |
|
lshpkrlem.t |
|
| 14 |
|
lshpkrlem.o |
|
| 15 |
|
lshpkrlem.g |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
|
simp11 |
|
| 19 |
18 6
|
syl |
|
| 20 |
|
lveclmod |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
22
|
lsssssubg |
|
| 24 |
21 23
|
syl |
|
| 25 |
6 20
|
syl |
|
| 26 |
22 5 25 7
|
lshplss |
|
| 27 |
18 26
|
syl |
|
| 28 |
24 27
|
sseldd |
|
| 29 |
18 8
|
syl |
|
| 30 |
1 22 3
|
lspsncl |
|
| 31 |
21 29 30
|
syl2anc |
|
| 32 |
24 31
|
sseldd |
|
| 33 |
1 16 3 4 5 6 7 8 10
|
lshpdisj |
|
| 34 |
18 33
|
syl |
|
| 35 |
|
lmodabl |
|
| 36 |
21 35
|
syl |
|
| 37 |
17 36 28 32
|
ablcntzd |
|
| 38 |
|
simp23r |
|
| 39 |
|
simp12 |
|
| 40 |
|
simp22 |
|
| 41 |
11 13 12 22
|
lssvscl |
|
| 42 |
21 27 39 40 41
|
syl22anc |
|
| 43 |
|
simp23l |
|
| 44 |
2 22
|
lssvacl |
|
| 45 |
21 27 42 43 44
|
syl22anc |
|
| 46 |
|
simp13 |
|
| 47 |
1 11 13 12
|
lmodvscl |
|
| 48 |
21 39 46 47
|
syl3anc |
|
| 49 |
|
simp21 |
|
| 50 |
1 2
|
lmodvacl |
|
| 51 |
21 48 49 50
|
syl3anc |
|
| 52 |
6
|
adantr |
|
| 53 |
7
|
adantr |
|
| 54 |
8
|
adantr |
|
| 55 |
|
simpr |
|
| 56 |
10
|
adantr |
|
| 57 |
1 2 3 4 5 52 53 54 55 56 11 12 13 14 15
|
lshpkrlem2 |
|
| 58 |
18 51 57
|
syl2anc |
|
| 59 |
1 13 11 12 3 21 58 29
|
ellspsni |
|
| 60 |
6
|
adantr |
|
| 61 |
7
|
adantr |
|
| 62 |
8
|
adantr |
|
| 63 |
|
simpr |
|
| 64 |
10
|
adantr |
|
| 65 |
1 2 3 4 5 60 61 62 63 64 11 12 13 14 15
|
lshpkrlem2 |
|
| 66 |
18 46 65
|
syl2anc |
|
| 67 |
|
eqid |
|
| 68 |
11 12 67
|
lmodmcl |
|
| 69 |
21 39 66 68
|
syl3anc |
|
| 70 |
6
|
adantr |
|
| 71 |
7
|
adantr |
|
| 72 |
8
|
adantr |
|
| 73 |
|
simpr |
|
| 74 |
10
|
adantr |
|
| 75 |
1 2 3 4 5 70 71 72 73 74 11 12 13 14 15
|
lshpkrlem2 |
|
| 76 |
18 49 75
|
syl2anc |
|
| 77 |
|
eqid |
|
| 78 |
11 12 77
|
lmodacl |
|
| 79 |
21 69 76 78
|
syl3anc |
|
| 80 |
1 13 11 12 3 21 79 29
|
ellspsni |
|
| 81 |
|
simp33 |
|
| 82 |
|
simp1 |
|
| 83 |
1 22
|
lssel |
|
| 84 |
27 40 83
|
syl2anc |
|
| 85 |
1 22
|
lssel |
|
| 86 |
27 43 85
|
syl2anc |
|
| 87 |
|
simp31 |
|
| 88 |
|
simp32 |
|
| 89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
lshpkrlem4 |
|
| 90 |
82 49 84 86 87 88 89
|
syl132anc |
|
| 91 |
81 90
|
eqtr3d |
|
| 92 |
2 16 17 28 32 34 37 38 45 59 80 91
|
subgdisj2 |
|
| 93 |
1 3 4 5 16 25 7 8 10
|
lshpne0 |
|
| 94 |
18 93
|
syl |
|
| 95 |
1 13 11 12 16 19 58 79 29 94
|
lvecvscan2 |
|
| 96 |
92 95
|
mpbid |
|