Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
|
2 |
|
lshpkrlem.a |
|
3 |
|
lshpkrlem.n |
|
4 |
|
lshpkrlem.p |
|
5 |
|
lshpkrlem.h |
|
6 |
|
lshpkrlem.w |
|
7 |
|
lshpkrlem.u |
|
8 |
|
lshpkrlem.z |
|
9 |
|
lshpkrlem.x |
|
10 |
|
lshpkrlem.e |
|
11 |
|
lshpkrlem.d |
|
12 |
|
lshpkrlem.k |
|
13 |
|
lshpkrlem.t |
|
14 |
|
lshpkrlem.o |
|
15 |
|
lshpkrlem.g |
|
16 |
|
simp3l |
|
17 |
16
|
oveq2d |
|
18 |
|
simp3r |
|
19 |
17 18
|
oveq12d |
|
20 |
|
simpl1 |
|
21 |
|
lveclmod |
|
22 |
20 6 21
|
3syl |
|
23 |
|
simpl2 |
|
24 |
|
simpr2 |
|
25 |
|
simpl3 |
|
26 |
6
|
adantr |
|
27 |
7
|
adantr |
|
28 |
8
|
adantr |
|
29 |
|
simpr |
|
30 |
10
|
adantr |
|
31 |
1 2 3 4 5 26 27 28 29 30 11 12 13 14 15
|
lshpkrlem2 |
|
32 |
20 25 31
|
syl2anc |
|
33 |
20 8
|
syl |
|
34 |
1 11 13 12
|
lmodvscl |
|
35 |
22 32 33 34
|
syl3anc |
|
36 |
1 2 11 13 12
|
lmodvsdi |
|
37 |
22 23 24 35 36
|
syl13anc |
|
38 |
|
eqid |
|
39 |
1 11 13 12 38
|
lmodvsass |
|
40 |
22 23 32 33 39
|
syl13anc |
|
41 |
40
|
oveq2d |
|
42 |
37 41
|
eqtr4d |
|
43 |
42
|
oveq1d |
|
44 |
1 11 13 12
|
lmodvscl |
|
45 |
22 23 24 44
|
syl3anc |
|
46 |
11 12 38
|
lmodmcl |
|
47 |
22 23 32 46
|
syl3anc |
|
48 |
1 11 13 12
|
lmodvscl |
|
49 |
22 47 33 48
|
syl3anc |
|
50 |
|
simpr3 |
|
51 |
|
simpr1 |
|
52 |
6
|
adantr |
|
53 |
7
|
adantr |
|
54 |
8
|
adantr |
|
55 |
|
simpr |
|
56 |
10
|
adantr |
|
57 |
1 2 3 4 5 52 53 54 55 56 11 12 13 14 15
|
lshpkrlem2 |
|
58 |
20 51 57
|
syl2anc |
|
59 |
1 11 13 12
|
lmodvscl |
|
60 |
22 58 33 59
|
syl3anc |
|
61 |
1 2
|
lmod4 |
|
62 |
22 45 49 50 60 61
|
syl122anc |
|
63 |
|
eqid |
|
64 |
1 2 11 13 12 63
|
lmodvsdir |
|
65 |
22 47 58 33 64
|
syl13anc |
|
66 |
65
|
oveq2d |
|
67 |
62 66
|
eqtr4d |
|
68 |
43 67
|
eqtrd |
|
69 |
68
|
3adant3 |
|
70 |
19 69
|
eqtrd |
|