Metamath Proof Explorer


Theorem lmod4

Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V=BaseW
lmod4.p +˙=+W
Assertion lmod4 WLModXVYVZVUVX+˙Y+˙Z+˙U=X+˙Z+˙Y+˙U

Proof

Step Hyp Ref Expression
1 lmod4.v V=BaseW
2 lmod4.p +˙=+W
3 lmodcmn WLModWCMnd
4 1 2 cmn4 WCMndXVYVZVUVX+˙Y+˙Z+˙U=X+˙Z+˙Y+˙U
5 3 4 syl3an1 WLModXVYVZVUVX+˙Y+˙Z+˙U=X+˙Z+˙Y+˙U