Metamath Proof Explorer
Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
|
|
Ref |
Expression |
|
Hypotheses |
lmod4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
lmod4.p |
⊢ + = ( +g ‘ 𝑊 ) |
|
Assertion |
lmod4 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
lmod4.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lmod4.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lmodcmn |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd ) |
4 |
1 2
|
cmn4 |
⊢ ( ( 𝑊 ∈ CMnd ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |
5 |
3 4
|
syl3an1 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑉 ∧ 𝑈 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) ) |