Metamath Proof Explorer


Theorem lmod4

Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v 𝑉 = ( Base ‘ 𝑊 )
lmod4.p + = ( +g𝑊 )
Assertion lmod4 ( ( 𝑊 ∈ LMod ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝑍𝑉𝑈𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 lmod4.v 𝑉 = ( Base ‘ 𝑊 )
2 lmod4.p + = ( +g𝑊 )
3 lmodcmn ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd )
4 1 2 cmn4 ( ( 𝑊 ∈ CMnd ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝑍𝑉𝑈𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) )
5 3 4 syl3an1 ( ( 𝑊 ∈ LMod ∧ ( 𝑋𝑉𝑌𝑉 ) ∧ ( 𝑍𝑉𝑈𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑈 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑈 ) ) )