Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmod4.v | |- V = ( Base ` W ) |
|
lmod4.p | |- .+ = ( +g ` W ) |
||
Assertion | lmod4 | |- ( ( W e. LMod /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod4.v | |- V = ( Base ` W ) |
|
2 | lmod4.p | |- .+ = ( +g ` W ) |
|
3 | lmodcmn | |- ( W e. LMod -> W e. CMnd ) |
|
4 | 1 2 | cmn4 | |- ( ( W e. CMnd /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) ) |
5 | 3 4 | syl3an1 | |- ( ( W e. LMod /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) ) |