Metamath Proof Explorer


Theorem lmod4

Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v
|- V = ( Base ` W )
lmod4.p
|- .+ = ( +g ` W )
Assertion lmod4
|- ( ( W e. LMod /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) )

Proof

Step Hyp Ref Expression
1 lmod4.v
 |-  V = ( Base ` W )
2 lmod4.p
 |-  .+ = ( +g ` W )
3 lmodcmn
 |-  ( W e. LMod -> W e. CMnd )
4 1 2 cmn4
 |-  ( ( W e. CMnd /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) )
5 3 4 syl3an1
 |-  ( ( W e. LMod /\ ( X e. V /\ Y e. V ) /\ ( Z e. V /\ U e. V ) ) -> ( ( X .+ Y ) .+ ( Z .+ U ) ) = ( ( X .+ Z ) .+ ( Y .+ U ) ) )