Database BASIC ALGEBRAIC STRUCTURES Left modules Definition and basic properties lmodvsubadd  
				
		 
		
			
		 
		Description:   Relationship between vector subtraction and addition.  ( hvsubadd  analog.)  (Contributed by NM , 31-Mar-2014)   (Revised by Mario Carneiro , 19-Jun-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lmod4.v   ⊢   V  =  Base  W      
					 
					
						lmod4.p   ⊢   +  ˙ =  +  W      
					 
					
						lmodvaddsub4.m   ⊢   -  ˙ =  -  W      
					 
				
					Assertion 
					lmodvsubadd    ⊢    W  ∈  LMod    ∧    A  ∈  V    ∧   B  ∈  V    ∧   C  ∈  V      →    A  -  ˙ B =  C    ↔   B  +  ˙ C =  A          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lmod4.v  ⊢   V  =  Base  W      
						
							2 
								
							 
							lmod4.p  ⊢   +  ˙ =  +  W      
						
							3 
								
							 
							lmodvaddsub4.m  ⊢   -  ˙ =  -  W      
						
							4 
								
							 
							lmodabl   ⊢   W  ∈  LMod    →   W  ∈  Abel         
						
							5 
								1  2  3 
							 
							ablsubadd   ⊢    W  ∈  Abel    ∧    A  ∈  V    ∧   B  ∈  V    ∧   C  ∈  V      →    A  -  ˙ B =  C    ↔   B  +  ˙ C =  A          
						
							6 
								4  5 
							 
							sylan   ⊢    W  ∈  LMod    ∧    A  ∈  V    ∧   B  ∈  V    ∧   C  ∈  V      →    A  -  ˙ B =  C    ↔   B  +  ˙ C =  A