Description: Lemma for lshpkrex . The value of tentative functional G is a scalar. (Contributed by NM, 16-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpkrlem.v | |
|
lshpkrlem.a | |
||
lshpkrlem.n | |
||
lshpkrlem.p | |
||
lshpkrlem.h | |
||
lshpkrlem.w | |
||
lshpkrlem.u | |
||
lshpkrlem.z | |
||
lshpkrlem.x | |
||
lshpkrlem.e | |
||
lshpkrlem.d | |
||
lshpkrlem.k | |
||
lshpkrlem.t | |
||
lshpkrlem.o | |
||
lshpkrlem.g | |
||
Assertion | lshpkrlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.v | |
|
2 | lshpkrlem.a | |
|
3 | lshpkrlem.n | |
|
4 | lshpkrlem.p | |
|
5 | lshpkrlem.h | |
|
6 | lshpkrlem.w | |
|
7 | lshpkrlem.u | |
|
8 | lshpkrlem.z | |
|
9 | lshpkrlem.x | |
|
10 | lshpkrlem.e | |
|
11 | lshpkrlem.d | |
|
12 | lshpkrlem.k | |
|
13 | lshpkrlem.t | |
|
14 | lshpkrlem.o | |
|
15 | lshpkrlem.g | |
|
16 | eqeq1 | |
|
17 | 16 | rexbidv | |
18 | 17 | riotabidv | |
19 | riotaex | |
|
20 | 18 15 19 | fvmpt | |
21 | 9 20 | syl | |
22 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | lshpsmreu | |
23 | riotacl | |
|
24 | 22 23 | syl | |
25 | 21 24 | eqeltrd | |