Metamath Proof Explorer


Theorem lshpkrlem2

Description: Lemma for lshpkrex . The value of tentative functional G is a scalar. (Contributed by NM, 16-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V=BaseW
lshpkrlem.a +˙=+W
lshpkrlem.n N=LSpanW
lshpkrlem.p ˙=LSSumW
lshpkrlem.h H=LSHypW
lshpkrlem.w φWLVec
lshpkrlem.u φUH
lshpkrlem.z φZV
lshpkrlem.x φXV
lshpkrlem.e φU˙NZ=V
lshpkrlem.d D=ScalarW
lshpkrlem.k K=BaseD
lshpkrlem.t ·˙=W
lshpkrlem.o 0˙=0D
lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
Assertion lshpkrlem2 φGXK

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V=BaseW
2 lshpkrlem.a +˙=+W
3 lshpkrlem.n N=LSpanW
4 lshpkrlem.p ˙=LSSumW
5 lshpkrlem.h H=LSHypW
6 lshpkrlem.w φWLVec
7 lshpkrlem.u φUH
8 lshpkrlem.z φZV
9 lshpkrlem.x φXV
10 lshpkrlem.e φU˙NZ=V
11 lshpkrlem.d D=ScalarW
12 lshpkrlem.k K=BaseD
13 lshpkrlem.t ·˙=W
14 lshpkrlem.o 0˙=0D
15 lshpkrlem.g G=xVιkK|yUx=y+˙k·˙Z
16 eqeq1 x=Xx=y+˙k·˙ZX=y+˙k·˙Z
17 16 rexbidv x=XyUx=y+˙k·˙ZyUX=y+˙k·˙Z
18 17 riotabidv x=XιkK|yUx=y+˙k·˙Z=ιkK|yUX=y+˙k·˙Z
19 riotaex ιkK|yUX=y+˙k·˙ZV
20 18 15 19 fvmpt XVGX=ιkK|yUX=y+˙k·˙Z
21 9 20 syl φGX=ιkK|yUX=y+˙k·˙Z
22 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu φ∃!kKyUX=y+˙k·˙Z
23 riotacl ∃!kKyUX=y+˙k·˙ZιkK|yUX=y+˙k·˙ZK
24 22 23 syl φιkK|yUX=y+˙k·˙ZK
25 21 24 eqeltrd φGXK