Metamath Proof Explorer


Theorem lshpkrlem2

Description: Lemma for lshpkrex . The value of tentative functional G is a scalar. (Contributed by NM, 16-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v 𝑉 = ( Base ‘ 𝑊 )
lshpkrlem.a + = ( +g𝑊 )
lshpkrlem.n 𝑁 = ( LSpan ‘ 𝑊 )
lshpkrlem.p = ( LSSum ‘ 𝑊 )
lshpkrlem.h 𝐻 = ( LSHyp ‘ 𝑊 )
lshpkrlem.w ( 𝜑𝑊 ∈ LVec )
lshpkrlem.u ( 𝜑𝑈𝐻 )
lshpkrlem.z ( 𝜑𝑍𝑉 )
lshpkrlem.x ( 𝜑𝑋𝑉 )
lshpkrlem.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
lshpkrlem.d 𝐷 = ( Scalar ‘ 𝑊 )
lshpkrlem.k 𝐾 = ( Base ‘ 𝐷 )
lshpkrlem.t · = ( ·𝑠𝑊 )
lshpkrlem.o 0 = ( 0g𝐷 )
lshpkrlem.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
Assertion lshpkrlem2 ( 𝜑 → ( 𝐺𝑋 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 lshpkrlem.v 𝑉 = ( Base ‘ 𝑊 )
2 lshpkrlem.a + = ( +g𝑊 )
3 lshpkrlem.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lshpkrlem.p = ( LSSum ‘ 𝑊 )
5 lshpkrlem.h 𝐻 = ( LSHyp ‘ 𝑊 )
6 lshpkrlem.w ( 𝜑𝑊 ∈ LVec )
7 lshpkrlem.u ( 𝜑𝑈𝐻 )
8 lshpkrlem.z ( 𝜑𝑍𝑉 )
9 lshpkrlem.x ( 𝜑𝑋𝑉 )
10 lshpkrlem.e ( 𝜑 → ( 𝑈 ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 )
11 lshpkrlem.d 𝐷 = ( Scalar ‘ 𝑊 )
12 lshpkrlem.k 𝐾 = ( Base ‘ 𝐷 )
13 lshpkrlem.t · = ( ·𝑠𝑊 )
14 lshpkrlem.o 0 = ( 0g𝐷 )
15 lshpkrlem.g 𝐺 = ( 𝑥𝑉 ↦ ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
16 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
17 16 rexbidv ( 𝑥 = 𝑋 → ( ∃ 𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
18 17 riotabidv ( 𝑥 = 𝑋 → ( 𝑘𝐾𝑦𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) = ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
19 riotaex ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ V
20 18 15 19 fvmpt ( 𝑋𝑉 → ( 𝐺𝑋 ) = ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
21 9 20 syl ( 𝜑 → ( 𝐺𝑋 ) = ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu ( 𝜑 → ∃! 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) )
23 riotacl ( ∃! 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) → ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ 𝐾 )
24 22 23 syl ( 𝜑 → ( 𝑘𝐾𝑦𝑈 𝑋 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ∈ 𝐾 )
25 21 24 eqeltrd ( 𝜑 → ( 𝐺𝑋 ) ∈ 𝐾 )