Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpkrlem.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
lshpkrlem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lshpkrlem.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
5 |
|
lshpkrlem.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
6 |
|
lshpkrlem.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lshpkrlem.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
8 |
|
lshpkrlem.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
9 |
|
lshpkrlem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
lshpkrlem.e |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑍 } ) ) = 𝑉 ) |
11 |
|
lshpkrlem.d |
⊢ 𝐷 = ( Scalar ‘ 𝑊 ) |
12 |
|
lshpkrlem.k |
⊢ 𝐾 = ( Base ‘ 𝐷 ) |
13 |
|
lshpkrlem.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
14 |
|
lshpkrlem.o |
⊢ 0 = ( 0g ‘ 𝐷 ) |
15 |
|
lshpkrlem.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
⊢ ( 𝜑 → ∃! 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
17 |
|
riotasbc |
⊢ ( ∃! 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) → [ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → [ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
19 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
21 |
20
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) = ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
22 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 · 𝑍 ) = ( 𝑙 · 𝑍 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑦 + ( 𝑘 · 𝑍 ) ) = ( 𝑦 + ( 𝑙 · 𝑍 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ 𝑥 = ( 𝑦 + ( 𝑙 · 𝑍 ) ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑘 = 𝑙 → ( ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑙 · 𝑍 ) ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 + ( 𝑙 · 𝑍 ) ) = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = ( 𝑦 + ( 𝑙 · 𝑍 ) ) ↔ 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
28 |
27
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑙 · 𝑍 ) ) ↔ ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
29 |
25 28
|
bitrdi |
⊢ ( 𝑘 = 𝑙 → ( ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ↔ ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
30 |
29
|
cbvriotavw |
⊢ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) = ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
31 |
30
|
mpteq2i |
⊢ ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑘 ∈ 𝐾 ∃ 𝑦 ∈ 𝑈 𝑥 = ( 𝑦 + ( 𝑘 · 𝑍 ) ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
32 |
15 31
|
eqtri |
⊢ 𝐺 = ( 𝑥 ∈ 𝑉 ↦ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑥 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
33 |
|
riotaex |
⊢ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ∈ V |
34 |
21 32 33
|
fvmpt |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
35 |
|
dfsbcq |
⊢ ( ( 𝐺 ‘ 𝑋 ) = ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) → ( [ ( 𝐺 ‘ 𝑋 ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ [ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
36 |
9 34 35
|
3syl |
⊢ ( 𝜑 → ( [ ( 𝐺 ‘ 𝑋 ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ [ ( ℩ 𝑙 ∈ 𝐾 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) ) |
37 |
18 36
|
mpbird |
⊢ ( 𝜑 → [ ( 𝐺 ‘ 𝑋 ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ) |
38 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑋 ) ∈ V |
39 |
|
oveq1 |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑋 ) → ( 𝑙 · 𝑍 ) = ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑋 ) → ( 𝑧 + ( 𝑙 · 𝑍 ) ) = ( 𝑧 + ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑋 ) → ( 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ 𝑋 = ( 𝑧 + ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) ) ) |
42 |
41
|
rexbidv |
⊢ ( 𝑙 = ( 𝐺 ‘ 𝑋 ) → ( ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) ) ) |
43 |
38 42
|
sbcie |
⊢ ( [ ( 𝐺 ‘ 𝑋 ) / 𝑙 ] ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( 𝑙 · 𝑍 ) ) ↔ ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) ) |
44 |
37 43
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑧 + ( ( 𝐺 ‘ 𝑋 ) · 𝑍 ) ) ) |