Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
|- V = ( Base ` W ) |
2 |
|
lshpkrlem.a |
|- .+ = ( +g ` W ) |
3 |
|
lshpkrlem.n |
|- N = ( LSpan ` W ) |
4 |
|
lshpkrlem.p |
|- .(+) = ( LSSum ` W ) |
5 |
|
lshpkrlem.h |
|- H = ( LSHyp ` W ) |
6 |
|
lshpkrlem.w |
|- ( ph -> W e. LVec ) |
7 |
|
lshpkrlem.u |
|- ( ph -> U e. H ) |
8 |
|
lshpkrlem.z |
|- ( ph -> Z e. V ) |
9 |
|
lshpkrlem.x |
|- ( ph -> X e. V ) |
10 |
|
lshpkrlem.e |
|- ( ph -> ( U .(+) ( N ` { Z } ) ) = V ) |
11 |
|
lshpkrlem.d |
|- D = ( Scalar ` W ) |
12 |
|
lshpkrlem.k |
|- K = ( Base ` D ) |
13 |
|
lshpkrlem.t |
|- .x. = ( .s ` W ) |
14 |
|
lshpkrlem.o |
|- .0. = ( 0g ` D ) |
15 |
|
lshpkrlem.g |
|- G = ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
|- ( ph -> E! l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) |
17 |
|
riotasbc |
|- ( E! l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) -> [. ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> [. ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) ) |
19 |
|
eqeq1 |
|- ( x = X -> ( x = ( z .+ ( l .x. Z ) ) <-> X = ( z .+ ( l .x. Z ) ) ) ) |
20 |
19
|
rexbidv |
|- ( x = X -> ( E. z e. U x = ( z .+ ( l .x. Z ) ) <-> E. z e. U X = ( z .+ ( l .x. Z ) ) ) ) |
21 |
20
|
riotabidv |
|- ( x = X -> ( iota_ l e. K E. z e. U x = ( z .+ ( l .x. Z ) ) ) = ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) ) |
22 |
|
oveq1 |
|- ( k = l -> ( k .x. Z ) = ( l .x. Z ) ) |
23 |
22
|
oveq2d |
|- ( k = l -> ( y .+ ( k .x. Z ) ) = ( y .+ ( l .x. Z ) ) ) |
24 |
23
|
eqeq2d |
|- ( k = l -> ( x = ( y .+ ( k .x. Z ) ) <-> x = ( y .+ ( l .x. Z ) ) ) ) |
25 |
24
|
rexbidv |
|- ( k = l -> ( E. y e. U x = ( y .+ ( k .x. Z ) ) <-> E. y e. U x = ( y .+ ( l .x. Z ) ) ) ) |
26 |
|
oveq1 |
|- ( y = z -> ( y .+ ( l .x. Z ) ) = ( z .+ ( l .x. Z ) ) ) |
27 |
26
|
eqeq2d |
|- ( y = z -> ( x = ( y .+ ( l .x. Z ) ) <-> x = ( z .+ ( l .x. Z ) ) ) ) |
28 |
27
|
cbvrexvw |
|- ( E. y e. U x = ( y .+ ( l .x. Z ) ) <-> E. z e. U x = ( z .+ ( l .x. Z ) ) ) |
29 |
25 28
|
bitrdi |
|- ( k = l -> ( E. y e. U x = ( y .+ ( k .x. Z ) ) <-> E. z e. U x = ( z .+ ( l .x. Z ) ) ) ) |
30 |
29
|
cbvriotavw |
|- ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) = ( iota_ l e. K E. z e. U x = ( z .+ ( l .x. Z ) ) ) |
31 |
30
|
mpteq2i |
|- ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) ) = ( x e. V |-> ( iota_ l e. K E. z e. U x = ( z .+ ( l .x. Z ) ) ) ) |
32 |
15 31
|
eqtri |
|- G = ( x e. V |-> ( iota_ l e. K E. z e. U x = ( z .+ ( l .x. Z ) ) ) ) |
33 |
|
riotaex |
|- ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) e. _V |
34 |
21 32 33
|
fvmpt |
|- ( X e. V -> ( G ` X ) = ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) ) |
35 |
|
dfsbcq |
|- ( ( G ` X ) = ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) -> ( [. ( G ` X ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) <-> [. ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) ) ) |
36 |
9 34 35
|
3syl |
|- ( ph -> ( [. ( G ` X ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) <-> [. ( iota_ l e. K E. z e. U X = ( z .+ ( l .x. Z ) ) ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) ) ) |
37 |
18 36
|
mpbird |
|- ( ph -> [. ( G ` X ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) ) |
38 |
|
fvex |
|- ( G ` X ) e. _V |
39 |
|
oveq1 |
|- ( l = ( G ` X ) -> ( l .x. Z ) = ( ( G ` X ) .x. Z ) ) |
40 |
39
|
oveq2d |
|- ( l = ( G ` X ) -> ( z .+ ( l .x. Z ) ) = ( z .+ ( ( G ` X ) .x. Z ) ) ) |
41 |
40
|
eqeq2d |
|- ( l = ( G ` X ) -> ( X = ( z .+ ( l .x. Z ) ) <-> X = ( z .+ ( ( G ` X ) .x. Z ) ) ) ) |
42 |
41
|
rexbidv |
|- ( l = ( G ` X ) -> ( E. z e. U X = ( z .+ ( l .x. Z ) ) <-> E. z e. U X = ( z .+ ( ( G ` X ) .x. Z ) ) ) ) |
43 |
38 42
|
sbcie |
|- ( [. ( G ` X ) / l ]. E. z e. U X = ( z .+ ( l .x. Z ) ) <-> E. z e. U X = ( z .+ ( ( G ` X ) .x. Z ) ) ) |
44 |
37 43
|
sylib |
|- ( ph -> E. z e. U X = ( z .+ ( ( G ` X ) .x. Z ) ) ) |