Metamath Proof Explorer


Theorem lshpkrlem2

Description: Lemma for lshpkrex . The value of tentative functional G is a scalar. (Contributed by NM, 16-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v
|- V = ( Base ` W )
lshpkrlem.a
|- .+ = ( +g ` W )
lshpkrlem.n
|- N = ( LSpan ` W )
lshpkrlem.p
|- .(+) = ( LSSum ` W )
lshpkrlem.h
|- H = ( LSHyp ` W )
lshpkrlem.w
|- ( ph -> W e. LVec )
lshpkrlem.u
|- ( ph -> U e. H )
lshpkrlem.z
|- ( ph -> Z e. V )
lshpkrlem.x
|- ( ph -> X e. V )
lshpkrlem.e
|- ( ph -> ( U .(+) ( N ` { Z } ) ) = V )
lshpkrlem.d
|- D = ( Scalar ` W )
lshpkrlem.k
|- K = ( Base ` D )
lshpkrlem.t
|- .x. = ( .s ` W )
lshpkrlem.o
|- .0. = ( 0g ` D )
lshpkrlem.g
|- G = ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) )
Assertion lshpkrlem2
|- ( ph -> ( G ` X ) e. K )

Proof

Step Hyp Ref Expression
1 lshpkrlem.v
 |-  V = ( Base ` W )
2 lshpkrlem.a
 |-  .+ = ( +g ` W )
3 lshpkrlem.n
 |-  N = ( LSpan ` W )
4 lshpkrlem.p
 |-  .(+) = ( LSSum ` W )
5 lshpkrlem.h
 |-  H = ( LSHyp ` W )
6 lshpkrlem.w
 |-  ( ph -> W e. LVec )
7 lshpkrlem.u
 |-  ( ph -> U e. H )
8 lshpkrlem.z
 |-  ( ph -> Z e. V )
9 lshpkrlem.x
 |-  ( ph -> X e. V )
10 lshpkrlem.e
 |-  ( ph -> ( U .(+) ( N ` { Z } ) ) = V )
11 lshpkrlem.d
 |-  D = ( Scalar ` W )
12 lshpkrlem.k
 |-  K = ( Base ` D )
13 lshpkrlem.t
 |-  .x. = ( .s ` W )
14 lshpkrlem.o
 |-  .0. = ( 0g ` D )
15 lshpkrlem.g
 |-  G = ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) )
16 eqeq1
 |-  ( x = X -> ( x = ( y .+ ( k .x. Z ) ) <-> X = ( y .+ ( k .x. Z ) ) ) )
17 16 rexbidv
 |-  ( x = X -> ( E. y e. U x = ( y .+ ( k .x. Z ) ) <-> E. y e. U X = ( y .+ ( k .x. Z ) ) ) )
18 17 riotabidv
 |-  ( x = X -> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) = ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) )
19 riotaex
 |-  ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) e. _V
20 18 15 19 fvmpt
 |-  ( X e. V -> ( G ` X ) = ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) )
21 9 20 syl
 |-  ( ph -> ( G ` X ) = ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu
 |-  ( ph -> E! k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) )
23 riotacl
 |-  ( E! k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) -> ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) e. K )
24 22 23 syl
 |-  ( ph -> ( iota_ k e. K E. y e. U X = ( y .+ ( k .x. Z ) ) ) e. K )
25 21 24 eqeltrd
 |-  ( ph -> ( G ` X ) e. K )