Step |
Hyp |
Ref |
Expression |
1 |
|
subgdisj.p |
|
2 |
|
subgdisj.o |
|
3 |
|
subgdisj.z |
|
4 |
|
subgdisj.t |
|
5 |
|
subgdisj.u |
|
6 |
|
subgdisj.i |
|
7 |
|
subgdisj.s |
|
8 |
|
subgdisj.a |
|
9 |
|
subgdisj.c |
|
10 |
|
subgdisj.b |
|
11 |
|
subgdisj.d |
|
12 |
|
subgdisj.j |
|
13 |
|
incom |
|
14 |
13 6
|
eqtr3id |
|
15 |
3 4 5 7
|
cntzrecd |
|
16 |
7 8
|
sseldd |
|
17 |
1 3
|
cntzi |
|
18 |
16 10 17
|
syl2anc |
|
19 |
7 9
|
sseldd |
|
20 |
1 3
|
cntzi |
|
21 |
19 11 20
|
syl2anc |
|
22 |
12 18 21
|
3eqtr3d |
|
23 |
1 2 3 5 4 14 15 10 11 8 9 22
|
subgdisj1 |
|