Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subgdisj.p | |
|
subgdisj.o | |
||
subgdisj.z | |
||
subgdisj.t | |
||
subgdisj.u | |
||
subgdisj.i | |
||
subgdisj.s | |
||
subgdisj.a | |
||
subgdisj.c | |
||
subgdisj.b | |
||
subgdisj.d | |
||
subgdisj.j | |
||
Assertion | subgdisj1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgdisj.p | |
|
2 | subgdisj.o | |
|
3 | subgdisj.z | |
|
4 | subgdisj.t | |
|
5 | subgdisj.u | |
|
6 | subgdisj.i | |
|
7 | subgdisj.s | |
|
8 | subgdisj.a | |
|
9 | subgdisj.c | |
|
10 | subgdisj.b | |
|
11 | subgdisj.d | |
|
12 | subgdisj.j | |
|
13 | eqid | |
|
14 | 13 | subgsubcl | |
15 | 4 8 9 14 | syl3anc | |
16 | 7 9 | sseldd | |
17 | 1 3 | cntzi | |
18 | 16 10 17 | syl2anc | |
19 | 12 18 | oveq12d | |
20 | subgrcl | |
|
21 | 4 20 | syl | |
22 | eqid | |
|
23 | 22 | subgss | |
24 | 4 23 | syl | |
25 | 24 8 | sseldd | |
26 | 22 | subgss | |
27 | 5 26 | syl | |
28 | 27 10 | sseldd | |
29 | 22 1 | grpcl | |
30 | 21 25 28 29 | syl3anc | |
31 | 24 9 | sseldd | |
32 | 22 1 13 | grpsubsub4 | |
33 | 21 30 28 31 32 | syl13anc | |
34 | 12 30 | eqeltrrd | |
35 | 22 1 13 | grpsubsub4 | |
36 | 21 34 31 28 35 | syl13anc | |
37 | 19 33 36 | 3eqtr4d | |
38 | 22 1 13 | grppncan | |
39 | 21 25 28 38 | syl3anc | |
40 | 39 | oveq1d | |
41 | 1 3 | cntzi | |
42 | 16 11 41 | syl2anc | |
43 | 42 | oveq1d | |
44 | 27 11 | sseldd | |
45 | 22 1 13 | grppncan | |
46 | 21 44 31 45 | syl3anc | |
47 | 43 46 | eqtrd | |
48 | 47 | oveq1d | |
49 | 37 40 48 | 3eqtr3d | |
50 | 13 | subgsubcl | |
51 | 5 11 10 50 | syl3anc | |
52 | 49 51 | eqeltrd | |
53 | 15 52 | elind | |
54 | 53 6 | eleqtrd | |
55 | elsni | |
|
56 | 54 55 | syl | |
57 | 22 2 13 | grpsubeq0 | |
58 | 21 25 31 57 | syl3anc | |
59 | 56 58 | mpbid | |