Metamath Proof Explorer


Theorem subgdisj1

Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses subgdisj.p +˙=+G
subgdisj.o 0˙=0G
subgdisj.z Z=CntzG
subgdisj.t φTSubGrpG
subgdisj.u φUSubGrpG
subgdisj.i φTU=0˙
subgdisj.s φTZU
subgdisj.a φAT
subgdisj.c φCT
subgdisj.b φBU
subgdisj.d φDU
subgdisj.j φA+˙B=C+˙D
Assertion subgdisj1 φA=C

Proof

Step Hyp Ref Expression
1 subgdisj.p +˙=+G
2 subgdisj.o 0˙=0G
3 subgdisj.z Z=CntzG
4 subgdisj.t φTSubGrpG
5 subgdisj.u φUSubGrpG
6 subgdisj.i φTU=0˙
7 subgdisj.s φTZU
8 subgdisj.a φAT
9 subgdisj.c φCT
10 subgdisj.b φBU
11 subgdisj.d φDU
12 subgdisj.j φA+˙B=C+˙D
13 eqid -G=-G
14 13 subgsubcl TSubGrpGATCTA-GCT
15 4 8 9 14 syl3anc φA-GCT
16 7 9 sseldd φCZU
17 1 3 cntzi CZUBUC+˙B=B+˙C
18 16 10 17 syl2anc φC+˙B=B+˙C
19 12 18 oveq12d φA+˙B-GC+˙B=C+˙D-GB+˙C
20 subgrcl TSubGrpGGGrp
21 4 20 syl φGGrp
22 eqid BaseG=BaseG
23 22 subgss TSubGrpGTBaseG
24 4 23 syl φTBaseG
25 24 8 sseldd φABaseG
26 22 subgss USubGrpGUBaseG
27 5 26 syl φUBaseG
28 27 10 sseldd φBBaseG
29 22 1 grpcl GGrpABaseGBBaseGA+˙BBaseG
30 21 25 28 29 syl3anc φA+˙BBaseG
31 24 9 sseldd φCBaseG
32 22 1 13 grpsubsub4 GGrpA+˙BBaseGBBaseGCBaseGA+˙B-GB-GC=A+˙B-GC+˙B
33 21 30 28 31 32 syl13anc φA+˙B-GB-GC=A+˙B-GC+˙B
34 12 30 eqeltrrd φC+˙DBaseG
35 22 1 13 grpsubsub4 GGrpC+˙DBaseGCBaseGBBaseGC+˙D-GC-GB=C+˙D-GB+˙C
36 21 34 31 28 35 syl13anc φC+˙D-GC-GB=C+˙D-GB+˙C
37 19 33 36 3eqtr4d φA+˙B-GB-GC=C+˙D-GC-GB
38 22 1 13 grppncan GGrpABaseGBBaseGA+˙B-GB=A
39 21 25 28 38 syl3anc φA+˙B-GB=A
40 39 oveq1d φA+˙B-GB-GC=A-GC
41 1 3 cntzi CZUDUC+˙D=D+˙C
42 16 11 41 syl2anc φC+˙D=D+˙C
43 42 oveq1d φC+˙D-GC=D+˙C-GC
44 27 11 sseldd φDBaseG
45 22 1 13 grppncan GGrpDBaseGCBaseGD+˙C-GC=D
46 21 44 31 45 syl3anc φD+˙C-GC=D
47 43 46 eqtrd φC+˙D-GC=D
48 47 oveq1d φC+˙D-GC-GB=D-GB
49 37 40 48 3eqtr3d φA-GC=D-GB
50 13 subgsubcl USubGrpGDUBUD-GBU
51 5 11 10 50 syl3anc φD-GBU
52 49 51 eqeltrd φA-GCU
53 15 52 elind φA-GCTU
54 53 6 eleqtrd φA-GC0˙
55 elsni A-GC0˙A-GC=0˙
56 54 55 syl φA-GC=0˙
57 22 2 13 grpsubeq0 GGrpABaseGCBaseGA-GC=0˙A=C
58 21 25 31 57 syl3anc φA-GC=0˙A=C
59 56 58 mpbid φA=C