Metamath Proof Explorer


Theorem subgdisj1

Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses subgdisj.p + ˙ = + G
subgdisj.o 0 ˙ = 0 G
subgdisj.z Z = Cntz G
subgdisj.t φ T SubGrp G
subgdisj.u φ U SubGrp G
subgdisj.i φ T U = 0 ˙
subgdisj.s φ T Z U
subgdisj.a φ A T
subgdisj.c φ C T
subgdisj.b φ B U
subgdisj.d φ D U
subgdisj.j φ A + ˙ B = C + ˙ D
Assertion subgdisj1 φ A = C

Proof

Step Hyp Ref Expression
1 subgdisj.p + ˙ = + G
2 subgdisj.o 0 ˙ = 0 G
3 subgdisj.z Z = Cntz G
4 subgdisj.t φ T SubGrp G
5 subgdisj.u φ U SubGrp G
6 subgdisj.i φ T U = 0 ˙
7 subgdisj.s φ T Z U
8 subgdisj.a φ A T
9 subgdisj.c φ C T
10 subgdisj.b φ B U
11 subgdisj.d φ D U
12 subgdisj.j φ A + ˙ B = C + ˙ D
13 eqid - G = - G
14 13 subgsubcl T SubGrp G A T C T A - G C T
15 4 8 9 14 syl3anc φ A - G C T
16 7 9 sseldd φ C Z U
17 1 3 cntzi C Z U B U C + ˙ B = B + ˙ C
18 16 10 17 syl2anc φ C + ˙ B = B + ˙ C
19 12 18 oveq12d φ A + ˙ B - G C + ˙ B = C + ˙ D - G B + ˙ C
20 subgrcl T SubGrp G G Grp
21 4 20 syl φ G Grp
22 eqid Base G = Base G
23 22 subgss T SubGrp G T Base G
24 4 23 syl φ T Base G
25 24 8 sseldd φ A Base G
26 22 subgss U SubGrp G U Base G
27 5 26 syl φ U Base G
28 27 10 sseldd φ B Base G
29 22 1 grpcl G Grp A Base G B Base G A + ˙ B Base G
30 21 25 28 29 syl3anc φ A + ˙ B Base G
31 24 9 sseldd φ C Base G
32 22 1 13 grpsubsub4 G Grp A + ˙ B Base G B Base G C Base G A + ˙ B - G B - G C = A + ˙ B - G C + ˙ B
33 21 30 28 31 32 syl13anc φ A + ˙ B - G B - G C = A + ˙ B - G C + ˙ B
34 12 30 eqeltrrd φ C + ˙ D Base G
35 22 1 13 grpsubsub4 G Grp C + ˙ D Base G C Base G B Base G C + ˙ D - G C - G B = C + ˙ D - G B + ˙ C
36 21 34 31 28 35 syl13anc φ C + ˙ D - G C - G B = C + ˙ D - G B + ˙ C
37 19 33 36 3eqtr4d φ A + ˙ B - G B - G C = C + ˙ D - G C - G B
38 22 1 13 grppncan G Grp A Base G B Base G A + ˙ B - G B = A
39 21 25 28 38 syl3anc φ A + ˙ B - G B = A
40 39 oveq1d φ A + ˙ B - G B - G C = A - G C
41 1 3 cntzi C Z U D U C + ˙ D = D + ˙ C
42 16 11 41 syl2anc φ C + ˙ D = D + ˙ C
43 42 oveq1d φ C + ˙ D - G C = D + ˙ C - G C
44 27 11 sseldd φ D Base G
45 22 1 13 grppncan G Grp D Base G C Base G D + ˙ C - G C = D
46 21 44 31 45 syl3anc φ D + ˙ C - G C = D
47 43 46 eqtrd φ C + ˙ D - G C = D
48 47 oveq1d φ C + ˙ D - G C - G B = D - G B
49 37 40 48 3eqtr3d φ A - G C = D - G B
50 13 subgsubcl U SubGrp G D U B U D - G B U
51 5 11 10 50 syl3anc φ D - G B U
52 49 51 eqeltrd φ A - G C U
53 15 52 elind φ A - G C T U
54 53 6 eleqtrd φ A - G C 0 ˙
55 elsni A - G C 0 ˙ A - G C = 0 ˙
56 54 55 syl φ A - G C = 0 ˙
57 22 2 13 grpsubeq0 G Grp A Base G C Base G A - G C = 0 ˙ A = C
58 21 25 31 57 syl3anc φ A - G C = 0 ˙ A = C
59 56 58 mpbid φ A = C