Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkr.v |
|- V = ( Base ` W ) |
2 |
|
lshpkr.a |
|- .+ = ( +g ` W ) |
3 |
|
lshpkr.n |
|- N = ( LSpan ` W ) |
4 |
|
lshpkr.p |
|- .(+) = ( LSSum ` W ) |
5 |
|
lshpkr.h |
|- H = ( LSHyp ` W ) |
6 |
|
lshpkr.w |
|- ( ph -> W e. LVec ) |
7 |
|
lshpkr.u |
|- ( ph -> U e. H ) |
8 |
|
lshpkr.z |
|- ( ph -> Z e. V ) |
9 |
|
lshpkr.e |
|- ( ph -> ( U .(+) ( N ` { Z } ) ) = V ) |
10 |
|
lshpkr.d |
|- D = ( Scalar ` W ) |
11 |
|
lshpkr.k |
|- K = ( Base ` D ) |
12 |
|
lshpkr.t |
|- .x. = ( .s ` W ) |
13 |
|
lshpkr.g |
|- G = ( x e. V |-> ( iota_ k e. K E. y e. U x = ( y .+ ( k .x. Z ) ) ) ) |
14 |
|
lshpkr.l |
|- L = ( LKer ` W ) |
15 |
|
eqid |
|- ( LFnl ` W ) = ( LFnl ` W ) |
16 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
17 |
6 16
|
syl |
|- ( ph -> W e. LMod ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 15
|
lshpkrcl |
|- ( ph -> G e. ( LFnl ` W ) ) |
19 |
1 15 14 17 18
|
lkrssv |
|- ( ph -> ( L ` G ) C_ V ) |
20 |
19
|
sseld |
|- ( ph -> ( v e. ( L ` G ) -> v e. V ) ) |
21 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
22 |
21 5 17 7
|
lshplss |
|- ( ph -> U e. ( LSubSp ` W ) ) |
23 |
1 21
|
lssel |
|- ( ( U e. ( LSubSp ` W ) /\ v e. U ) -> v e. V ) |
24 |
22 23
|
sylan |
|- ( ( ph /\ v e. U ) -> v e. V ) |
25 |
24
|
ex |
|- ( ph -> ( v e. U -> v e. V ) ) |
26 |
|
eqid |
|- ( 0g ` D ) = ( 0g ` D ) |
27 |
1 10 26 15 14
|
ellkr |
|- ( ( W e. LVec /\ G e. ( LFnl ` W ) ) -> ( v e. ( L ` G ) <-> ( v e. V /\ ( G ` v ) = ( 0g ` D ) ) ) ) |
28 |
6 18 27
|
syl2anc |
|- ( ph -> ( v e. ( L ` G ) <-> ( v e. V /\ ( G ` v ) = ( 0g ` D ) ) ) ) |
29 |
28
|
baibd |
|- ( ( ph /\ v e. V ) -> ( v e. ( L ` G ) <-> ( G ` v ) = ( 0g ` D ) ) ) |
30 |
6
|
adantr |
|- ( ( ph /\ v e. V ) -> W e. LVec ) |
31 |
7
|
adantr |
|- ( ( ph /\ v e. V ) -> U e. H ) |
32 |
8
|
adantr |
|- ( ( ph /\ v e. V ) -> Z e. V ) |
33 |
|
simpr |
|- ( ( ph /\ v e. V ) -> v e. V ) |
34 |
9
|
adantr |
|- ( ( ph /\ v e. V ) -> ( U .(+) ( N ` { Z } ) ) = V ) |
35 |
1 2 3 4 5 30 31 32 33 34 10 11 12 26 13
|
lshpkrlem1 |
|- ( ( ph /\ v e. V ) -> ( v e. U <-> ( G ` v ) = ( 0g ` D ) ) ) |
36 |
29 35
|
bitr4d |
|- ( ( ph /\ v e. V ) -> ( v e. ( L ` G ) <-> v e. U ) ) |
37 |
36
|
ex |
|- ( ph -> ( v e. V -> ( v e. ( L ` G ) <-> v e. U ) ) ) |
38 |
20 25 37
|
pm5.21ndd |
|- ( ph -> ( v e. ( L ` G ) <-> v e. U ) ) |
39 |
38
|
eqrdv |
|- ( ph -> ( L ` G ) = U ) |