Step |
Hyp |
Ref |
Expression |
1 |
|
lshpkrlem.v |
|
2 |
|
lshpkrlem.a |
|
3 |
|
lshpkrlem.n |
|
4 |
|
lshpkrlem.p |
|
5 |
|
lshpkrlem.h |
|
6 |
|
lshpkrlem.w |
|
7 |
|
lshpkrlem.u |
|
8 |
|
lshpkrlem.z |
|
9 |
|
lshpkrlem.x |
|
10 |
|
lshpkrlem.e |
|
11 |
|
lshpkrlem.d |
|
12 |
|
lshpkrlem.k |
|
13 |
|
lshpkrlem.t |
|
14 |
|
lshpkrlem.o |
|
15 |
|
lshpkrlem.g |
|
16 |
|
lveclmod |
|
17 |
6 16
|
syl |
|
18 |
11
|
lmodfgrp |
|
19 |
12 14
|
grpidcl |
|
20 |
17 18 19
|
3syl |
|
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
lshpsmreu |
|
22 |
|
oveq1 |
|
23 |
22
|
oveq2d |
|
24 |
23
|
eqeq2d |
|
25 |
24
|
rexbidv |
|
26 |
25
|
riota2 |
|
27 |
20 21 26
|
syl2anc |
|
28 |
|
simpr |
|
29 |
|
eqidd |
|
30 |
|
eqeq2 |
|
31 |
30
|
rspcev |
|
32 |
28 29 31
|
syl2anc |
|
33 |
32
|
ex |
|
34 |
|
eleq1a |
|
35 |
34
|
a1i |
|
36 |
35
|
rexlimdv |
|
37 |
33 36
|
impbid |
|
38 |
|
eqid |
|
39 |
1 11 13 14 38
|
lmod0vs |
|
40 |
17 8 39
|
syl2anc |
|
41 |
40
|
adantr |
|
42 |
41
|
oveq2d |
|
43 |
6
|
adantr |
|
44 |
43 16
|
syl |
|
45 |
|
eqid |
|
46 |
45 5 17 7
|
lshplss |
|
47 |
1 45
|
lssel |
|
48 |
46 47
|
sylan |
|
49 |
1 2 38
|
lmod0vrid |
|
50 |
44 48 49
|
syl2anc |
|
51 |
42 50
|
eqtrd |
|
52 |
51
|
eqeq2d |
|
53 |
52
|
bicomd |
|
54 |
53
|
rexbidva |
|
55 |
37 54
|
bitrd |
|
56 |
|
eqeq1 |
|
57 |
56
|
rexbidv |
|
58 |
57
|
riotabidv |
|
59 |
|
riotaex |
|
60 |
58 15 59
|
fvmpt |
|
61 |
|
oveq1 |
|
62 |
61
|
eqeq2d |
|
63 |
62
|
cbvrexvw |
|
64 |
63
|
a1i |
|
65 |
64
|
riotabiia |
|
66 |
60 65
|
eqtrdi |
|
67 |
9 66
|
syl |
|
68 |
67
|
eqeq1d |
|
69 |
27 55 68
|
3bitr4d |
|