Metamath Proof Explorer


Theorem lshpkrlem1

Description: Lemma for lshpkrex . The value of tentative functional G is zero iff its argument belongs to hyperplane U . (Contributed by NM, 14-Jul-2014)

Ref Expression
Hypotheses lshpkrlem.v V = Base W
lshpkrlem.a + ˙ = + W
lshpkrlem.n N = LSpan W
lshpkrlem.p ˙ = LSSum W
lshpkrlem.h H = LSHyp W
lshpkrlem.w φ W LVec
lshpkrlem.u φ U H
lshpkrlem.z φ Z V
lshpkrlem.x φ X V
lshpkrlem.e φ U ˙ N Z = V
lshpkrlem.d D = Scalar W
lshpkrlem.k K = Base D
lshpkrlem.t · ˙ = W
lshpkrlem.o 0 ˙ = 0 D
lshpkrlem.g G = x V ι k K | y U x = y + ˙ k · ˙ Z
Assertion lshpkrlem1 φ X U G X = 0 ˙

Proof

Step Hyp Ref Expression
1 lshpkrlem.v V = Base W
2 lshpkrlem.a + ˙ = + W
3 lshpkrlem.n N = LSpan W
4 lshpkrlem.p ˙ = LSSum W
5 lshpkrlem.h H = LSHyp W
6 lshpkrlem.w φ W LVec
7 lshpkrlem.u φ U H
8 lshpkrlem.z φ Z V
9 lshpkrlem.x φ X V
10 lshpkrlem.e φ U ˙ N Z = V
11 lshpkrlem.d D = Scalar W
12 lshpkrlem.k K = Base D
13 lshpkrlem.t · ˙ = W
14 lshpkrlem.o 0 ˙ = 0 D
15 lshpkrlem.g G = x V ι k K | y U x = y + ˙ k · ˙ Z
16 lveclmod W LVec W LMod
17 6 16 syl φ W LMod
18 11 lmodfgrp W LMod D Grp
19 12 14 grpidcl D Grp 0 ˙ K
20 17 18 19 3syl φ 0 ˙ K
21 1 2 3 4 5 6 7 8 9 10 11 12 13 lshpsmreu φ ∃! k K b U X = b + ˙ k · ˙ Z
22 oveq1 k = 0 ˙ k · ˙ Z = 0 ˙ · ˙ Z
23 22 oveq2d k = 0 ˙ b + ˙ k · ˙ Z = b + ˙ 0 ˙ · ˙ Z
24 23 eqeq2d k = 0 ˙ X = b + ˙ k · ˙ Z X = b + ˙ 0 ˙ · ˙ Z
25 24 rexbidv k = 0 ˙ b U X = b + ˙ k · ˙ Z b U X = b + ˙ 0 ˙ · ˙ Z
26 25 riota2 0 ˙ K ∃! k K b U X = b + ˙ k · ˙ Z b U X = b + ˙ 0 ˙ · ˙ Z ι k K | b U X = b + ˙ k · ˙ Z = 0 ˙
27 20 21 26 syl2anc φ b U X = b + ˙ 0 ˙ · ˙ Z ι k K | b U X = b + ˙ k · ˙ Z = 0 ˙
28 simpr φ X U X U
29 eqidd φ X U X = X
30 eqeq2 b = X X = b X = X
31 30 rspcev X U X = X b U X = b
32 28 29 31 syl2anc φ X U b U X = b
33 32 ex φ X U b U X = b
34 eleq1a b U X = b X U
35 34 a1i φ b U X = b X U
36 35 rexlimdv φ b U X = b X U
37 33 36 impbid φ X U b U X = b
38 eqid 0 W = 0 W
39 1 11 13 14 38 lmod0vs W LMod Z V 0 ˙ · ˙ Z = 0 W
40 17 8 39 syl2anc φ 0 ˙ · ˙ Z = 0 W
41 40 adantr φ b U 0 ˙ · ˙ Z = 0 W
42 41 oveq2d φ b U b + ˙ 0 ˙ · ˙ Z = b + ˙ 0 W
43 6 adantr φ b U W LVec
44 43 16 syl φ b U W LMod
45 eqid LSubSp W = LSubSp W
46 45 5 17 7 lshplss φ U LSubSp W
47 1 45 lssel U LSubSp W b U b V
48 46 47 sylan φ b U b V
49 1 2 38 lmod0vrid W LMod b V b + ˙ 0 W = b
50 44 48 49 syl2anc φ b U b + ˙ 0 W = b
51 42 50 eqtrd φ b U b + ˙ 0 ˙ · ˙ Z = b
52 51 eqeq2d φ b U X = b + ˙ 0 ˙ · ˙ Z X = b
53 52 bicomd φ b U X = b X = b + ˙ 0 ˙ · ˙ Z
54 53 rexbidva φ b U X = b b U X = b + ˙ 0 ˙ · ˙ Z
55 37 54 bitrd φ X U b U X = b + ˙ 0 ˙ · ˙ Z
56 eqeq1 x = X x = y + ˙ k · ˙ Z X = y + ˙ k · ˙ Z
57 56 rexbidv x = X y U x = y + ˙ k · ˙ Z y U X = y + ˙ k · ˙ Z
58 57 riotabidv x = X ι k K | y U x = y + ˙ k · ˙ Z = ι k K | y U X = y + ˙ k · ˙ Z
59 riotaex ι k K | y U X = y + ˙ k · ˙ Z V
60 58 15 59 fvmpt X V G X = ι k K | y U X = y + ˙ k · ˙ Z
61 oveq1 y = b y + ˙ k · ˙ Z = b + ˙ k · ˙ Z
62 61 eqeq2d y = b X = y + ˙ k · ˙ Z X = b + ˙ k · ˙ Z
63 62 cbvrexvw y U X = y + ˙ k · ˙ Z b U X = b + ˙ k · ˙ Z
64 63 a1i k K y U X = y + ˙ k · ˙ Z b U X = b + ˙ k · ˙ Z
65 64 riotabiia ι k K | y U X = y + ˙ k · ˙ Z = ι k K | b U X = b + ˙ k · ˙ Z
66 60 65 eqtrdi X V G X = ι k K | b U X = b + ˙ k · ˙ Z
67 9 66 syl φ G X = ι k K | b U X = b + ˙ k · ˙ Z
68 67 eqeq1d φ G X = 0 ˙ ι k K | b U X = b + ˙ k · ˙ Z = 0 ˙
69 27 55 68 3bitr4d φ X U G X = 0 ˙