Metamath Proof Explorer


Theorem cbvrexv

Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexvw when possible. (Contributed by NM, 2-Jun-1998) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralv.1
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexv
|- ( E. x e. A ph <-> E. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvralv.1
 |-  ( x = y -> ( ph <-> ps ) )
2 nfv
 |-  F/ y ph
3 nfv
 |-  F/ x ps
4 2 3 1 cbvrex
 |-  ( E. x e. A ph <-> E. y e. A ps )