Metamath Proof Explorer


Theorem cbvrex

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexw when possible. (Contributed by NM, 31-Jul-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral.1
|- F/ y ph
cbvral.2
|- F/ x ps
cbvral.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrex
|- ( E. x e. A ph <-> E. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvral.1
 |-  F/ y ph
2 cbvral.2
 |-  F/ x ps
3 cbvral.3
 |-  ( x = y -> ( ph <-> ps ) )
4 nfcv
 |-  F/_ x A
5 nfcv
 |-  F/_ y A
6 4 5 1 2 3 cbvrexf
 |-  ( E. x e. A ph <-> E. y e. A ps )