Metamath Proof Explorer


Theorem cbvrex

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexw when possible. (Contributed by NM, 31-Jul-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral.1 𝑦 𝜑
cbvral.2 𝑥 𝜓
cbvral.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvral.1 𝑦 𝜑
2 cbvral.2 𝑥 𝜓
3 cbvral.3 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
4 nfcv 𝑥 𝐴
5 nfcv 𝑦 𝐴
6 4 5 1 2 3 cbvrexf ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )