Description: Change the bound variable of a restricted universal quantifier using implicit substitution. See cbvralvw based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralvw when possible. (Contributed by NM, 28-Jan-1997) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvralv.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | cbvralv | |- ( A. x e. A ph <-> A. y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralv.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | nfv | |- F/ y ph |
|
| 3 | nfv | |- F/ x ps |
|
| 4 | 2 3 1 | cbvral | |- ( A. x e. A ph <-> A. y e. A ps ) |