Metamath Proof Explorer


Theorem cbvral

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvralw when possible. (Contributed by NM, 31-Jul-2003) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral.1
|- F/ y ph
cbvral.2
|- F/ x ps
cbvral.3
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvral
|- ( A. x e. A ph <-> A. y e. A ps )

Proof

Step Hyp Ref Expression
1 cbvral.1
 |-  F/ y ph
2 cbvral.2
 |-  F/ x ps
3 cbvral.3
 |-  ( x = y -> ( ph <-> ps ) )
4 nfcv
 |-  F/_ x A
5 nfcv
 |-  F/_ y A
6 4 5 1 2 3 cbvralf
 |-  ( A. x e. A ph <-> A. y e. A ps )