| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrin.f |
|
| 2 |
|
lkrin.k |
|
| 3 |
|
lkrin.d |
|
| 4 |
|
lkrin.p |
|
| 5 |
|
lkrin.w |
|
| 6 |
|
lkrin.e |
|
| 7 |
|
lkrin.g |
|
| 8 |
|
elin |
|
| 9 |
5
|
adantr |
|
| 10 |
6
|
adantr |
|
| 11 |
|
simprl |
|
| 12 |
|
eqid |
|
| 13 |
12 1 2
|
lkrcl |
|
| 14 |
9 10 11 13
|
syl3anc |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
7
|
adantr |
|
| 18 |
12 15 16 1 3 4 9 10 17 14
|
ldualvaddval |
|
| 19 |
|
eqid |
|
| 20 |
15 19 1 2
|
lkrf0 |
|
| 21 |
9 10 11 20
|
syl3anc |
|
| 22 |
|
simprr |
|
| 23 |
15 19 1 2
|
lkrf0 |
|
| 24 |
9 17 22 23
|
syl3anc |
|
| 25 |
21 24
|
oveq12d |
|
| 26 |
15
|
lmodring |
|
| 27 |
5 26
|
syl |
|
| 28 |
|
ringgrp |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
eqid |
|
| 31 |
30 19
|
grpidcl |
|
| 32 |
30 16 19
|
grplid |
|
| 33 |
29 31 32
|
syl2anc2 |
|
| 34 |
33
|
adantr |
|
| 35 |
18 25 34
|
3eqtrd |
|
| 36 |
1 3 4 5 6 7
|
ldualvaddcl |
|
| 37 |
36
|
adantr |
|
| 38 |
12 15 19 1 2
|
ellkr |
|
| 39 |
9 37 38
|
syl2anc |
|
| 40 |
14 35 39
|
mpbir2and |
|
| 41 |
40
|
ex |
|
| 42 |
8 41
|
biimtrid |
|
| 43 |
42
|
ssrdv |
|