Metamath Proof Explorer


Theorem eqlkr4

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses eqlkr4.s S = Scalar W
eqlkr4.r R = Base S
eqlkr4.f F = LFnl W
eqlkr4.k K = LKer W
eqlkr4.d D = LDual W
eqlkr4.t · ˙ = D
eqlkr4.w φ W LVec
eqlkr4.g φ G F
eqlkr4.h φ H F
eqlkr4.e φ K G = K H
Assertion eqlkr4 φ r R H = r · ˙ G

Proof

Step Hyp Ref Expression
1 eqlkr4.s S = Scalar W
2 eqlkr4.r R = Base S
3 eqlkr4.f F = LFnl W
4 eqlkr4.k K = LKer W
5 eqlkr4.d D = LDual W
6 eqlkr4.t · ˙ = D
7 eqlkr4.w φ W LVec
8 eqlkr4.g φ G F
9 eqlkr4.h φ H F
10 eqlkr4.e φ K G = K H
11 eqid S = S
12 eqid Base W = Base W
13 1 2 11 12 3 4 eqlkr2 W LVec G F H F K G = K H r R H = G S f Base W × r
14 7 8 9 10 13 syl121anc φ r R H = G S f Base W × r
15 7 adantr φ r R W LVec
16 simpr φ r R r R
17 8 adantr φ r R G F
18 3 12 1 2 11 5 6 15 16 17 ldualvs φ r R r · ˙ G = G S f Base W × r
19 18 eqeq2d φ r R H = r · ˙ G H = G S f Base W × r
20 19 rexbidva φ r R H = r · ˙ G r R H = G S f Base W × r
21 14 20 mpbird φ r R H = r · ˙ G