Metamath Proof Explorer


Theorem eqlkr4

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses eqlkr4.s
|- S = ( Scalar ` W )
eqlkr4.r
|- R = ( Base ` S )
eqlkr4.f
|- F = ( LFnl ` W )
eqlkr4.k
|- K = ( LKer ` W )
eqlkr4.d
|- D = ( LDual ` W )
eqlkr4.t
|- .x. = ( .s ` D )
eqlkr4.w
|- ( ph -> W e. LVec )
eqlkr4.g
|- ( ph -> G e. F )
eqlkr4.h
|- ( ph -> H e. F )
eqlkr4.e
|- ( ph -> ( K ` G ) = ( K ` H ) )
Assertion eqlkr4
|- ( ph -> E. r e. R H = ( r .x. G ) )

Proof

Step Hyp Ref Expression
1 eqlkr4.s
 |-  S = ( Scalar ` W )
2 eqlkr4.r
 |-  R = ( Base ` S )
3 eqlkr4.f
 |-  F = ( LFnl ` W )
4 eqlkr4.k
 |-  K = ( LKer ` W )
5 eqlkr4.d
 |-  D = ( LDual ` W )
6 eqlkr4.t
 |-  .x. = ( .s ` D )
7 eqlkr4.w
 |-  ( ph -> W e. LVec )
8 eqlkr4.g
 |-  ( ph -> G e. F )
9 eqlkr4.h
 |-  ( ph -> H e. F )
10 eqlkr4.e
 |-  ( ph -> ( K ` G ) = ( K ` H ) )
11 eqid
 |-  ( .r ` S ) = ( .r ` S )
12 eqid
 |-  ( Base ` W ) = ( Base ` W )
13 1 2 11 12 3 4 eqlkr2
 |-  ( ( W e. LVec /\ ( G e. F /\ H e. F ) /\ ( K ` G ) = ( K ` H ) ) -> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) )
14 7 8 9 10 13 syl121anc
 |-  ( ph -> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) )
15 7 adantr
 |-  ( ( ph /\ r e. R ) -> W e. LVec )
16 simpr
 |-  ( ( ph /\ r e. R ) -> r e. R )
17 8 adantr
 |-  ( ( ph /\ r e. R ) -> G e. F )
18 3 12 1 2 11 5 6 15 16 17 ldualvs
 |-  ( ( ph /\ r e. R ) -> ( r .x. G ) = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) )
19 18 eqeq2d
 |-  ( ( ph /\ r e. R ) -> ( H = ( r .x. G ) <-> H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) )
20 19 rexbidva
 |-  ( ph -> ( E. r e. R H = ( r .x. G ) <-> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) )
21 14 20 mpbird
 |-  ( ph -> E. r e. R H = ( r .x. G ) )