| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqlkr4.s |
|- S = ( Scalar ` W ) |
| 2 |
|
eqlkr4.r |
|- R = ( Base ` S ) |
| 3 |
|
eqlkr4.f |
|- F = ( LFnl ` W ) |
| 4 |
|
eqlkr4.k |
|- K = ( LKer ` W ) |
| 5 |
|
eqlkr4.d |
|- D = ( LDual ` W ) |
| 6 |
|
eqlkr4.t |
|- .x. = ( .s ` D ) |
| 7 |
|
eqlkr4.w |
|- ( ph -> W e. LVec ) |
| 8 |
|
eqlkr4.g |
|- ( ph -> G e. F ) |
| 9 |
|
eqlkr4.h |
|- ( ph -> H e. F ) |
| 10 |
|
eqlkr4.e |
|- ( ph -> ( K ` G ) = ( K ` H ) ) |
| 11 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 13 |
1 2 11 12 3 4
|
eqlkr2 |
|- ( ( W e. LVec /\ ( G e. F /\ H e. F ) /\ ( K ` G ) = ( K ` H ) ) -> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) |
| 14 |
7 8 9 10 13
|
syl121anc |
|- ( ph -> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) |
| 15 |
7
|
adantr |
|- ( ( ph /\ r e. R ) -> W e. LVec ) |
| 16 |
|
simpr |
|- ( ( ph /\ r e. R ) -> r e. R ) |
| 17 |
8
|
adantr |
|- ( ( ph /\ r e. R ) -> G e. F ) |
| 18 |
3 12 1 2 11 5 6 15 16 17
|
ldualvs |
|- ( ( ph /\ r e. R ) -> ( r .x. G ) = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) |
| 19 |
18
|
eqeq2d |
|- ( ( ph /\ r e. R ) -> ( H = ( r .x. G ) <-> H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) ) |
| 20 |
19
|
rexbidva |
|- ( ph -> ( E. r e. R H = ( r .x. G ) <-> E. r e. R H = ( G oF ( .r ` S ) ( ( Base ` W ) X. { r } ) ) ) ) |
| 21 |
14 20
|
mpbird |
|- ( ph -> E. r e. R H = ( r .x. G ) ) |