Step |
Hyp |
Ref |
Expression |
1 |
|
ldual1dim.f |
|- F = ( LFnl ` W ) |
2 |
|
ldual1dim.l |
|- L = ( LKer ` W ) |
3 |
|
ldual1dim.d |
|- D = ( LDual ` W ) |
4 |
|
ldual1dim.n |
|- N = ( LSpan ` D ) |
5 |
|
ldual1dim.w |
|- ( ph -> W e. LVec ) |
6 |
|
ldual1dim.g |
|- ( ph -> G e. F ) |
7 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
8 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( Scalar ` D ) = ( Scalar ` D ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` D ) ) |
11 |
7 8 3 9 10 5
|
ldualsbase |
|- ( ph -> ( Base ` ( Scalar ` D ) ) = ( Base ` ( Scalar ` W ) ) ) |
12 |
11
|
eleq2d |
|- ( ph -> ( k e. ( Base ` ( Scalar ` D ) ) <-> k e. ( Base ` ( Scalar ` W ) ) ) ) |
13 |
12
|
anbi1d |
|- ( ph -> ( ( k e. ( Base ` ( Scalar ` D ) ) /\ g = ( k ( .s ` D ) G ) ) <-> ( k e. ( Base ` ( Scalar ` W ) ) /\ g = ( k ( .s ` D ) G ) ) ) ) |
14 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
15 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
16 |
|
eqid |
|- ( .s ` D ) = ( .s ` D ) |
17 |
5
|
adantr |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) -> W e. LVec ) |
18 |
|
simpr |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
19 |
6
|
adantr |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) -> G e. F ) |
20 |
1 14 7 8 15 3 16 17 18 19
|
ldualvs |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( k ( .s ` D ) G ) = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) |
21 |
20
|
eqeq2d |
|- ( ( ph /\ k e. ( Base ` ( Scalar ` W ) ) ) -> ( g = ( k ( .s ` D ) G ) <-> g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) ) |
22 |
21
|
pm5.32da |
|- ( ph -> ( ( k e. ( Base ` ( Scalar ` W ) ) /\ g = ( k ( .s ` D ) G ) ) <-> ( k e. ( Base ` ( Scalar ` W ) ) /\ g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) ) ) |
23 |
13 22
|
bitrd |
|- ( ph -> ( ( k e. ( Base ` ( Scalar ` D ) ) /\ g = ( k ( .s ` D ) G ) ) <-> ( k e. ( Base ` ( Scalar ` W ) ) /\ g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) ) ) |
24 |
23
|
rexbidv2 |
|- ( ph -> ( E. k e. ( Base ` ( Scalar ` D ) ) g = ( k ( .s ` D ) G ) <-> E. k e. ( Base ` ( Scalar ` W ) ) g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) ) ) |
25 |
24
|
abbidv |
|- ( ph -> { g | E. k e. ( Base ` ( Scalar ` D ) ) g = ( k ( .s ` D ) G ) } = { g | E. k e. ( Base ` ( Scalar ` W ) ) g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) } ) |
26 |
|
lveclmod |
|- ( W e. LVec -> W e. LMod ) |
27 |
3 26
|
lduallmod |
|- ( W e. LVec -> D e. LMod ) |
28 |
5 27
|
syl |
|- ( ph -> D e. LMod ) |
29 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
30 |
1 3 29 5 6
|
ldualelvbase |
|- ( ph -> G e. ( Base ` D ) ) |
31 |
9 10 29 16 4
|
lspsn |
|- ( ( D e. LMod /\ G e. ( Base ` D ) ) -> ( N ` { G } ) = { g | E. k e. ( Base ` ( Scalar ` D ) ) g = ( k ( .s ` D ) G ) } ) |
32 |
28 30 31
|
syl2anc |
|- ( ph -> ( N ` { G } ) = { g | E. k e. ( Base ` ( Scalar ` D ) ) g = ( k ( .s ` D ) G ) } ) |
33 |
14 7 1 2 8 15 5 6
|
lfl1dim |
|- ( ph -> { g e. F | ( L ` G ) C_ ( L ` g ) } = { g | E. k e. ( Base ` ( Scalar ` W ) ) g = ( G oF ( .r ` ( Scalar ` W ) ) ( ( Base ` W ) X. { k } ) ) } ) |
34 |
25 32 33
|
3eqtr4d |
|- ( ph -> ( N ` { G } ) = { g e. F | ( L ` G ) C_ ( L ` g ) } ) |