Description: Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualsbase.f | |- F = ( Scalar ` W ) |
|
ldualsbase.l | |- L = ( Base ` F ) |
||
ldualsbase.d | |- D = ( LDual ` W ) |
||
ldualsbase.r | |- R = ( Scalar ` D ) |
||
ldualsbase.k | |- K = ( Base ` R ) |
||
ldualsbase.w | |- ( ph -> W e. V ) |
||
Assertion | ldualsbase | |- ( ph -> K = L ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualsbase.f | |- F = ( Scalar ` W ) |
|
2 | ldualsbase.l | |- L = ( Base ` F ) |
|
3 | ldualsbase.d | |- D = ( LDual ` W ) |
|
4 | ldualsbase.r | |- R = ( Scalar ` D ) |
|
5 | ldualsbase.k | |- K = ( Base ` R ) |
|
6 | ldualsbase.w | |- ( ph -> W e. V ) |
|
7 | eqid | |- ( oppR ` F ) = ( oppR ` F ) |
|
8 | 1 7 3 4 6 | ldualsca | |- ( ph -> R = ( oppR ` F ) ) |
9 | 8 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( oppR ` F ) ) ) |
10 | 7 2 | opprbas | |- L = ( Base ` ( oppR ` F ) ) |
11 | 9 5 10 | 3eqtr4g | |- ( ph -> K = L ) |