Metamath Proof Explorer


Theorem ldualsaddN

Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ldualsadd.f
|- F = ( Scalar ` W )
ldualsadd.q
|- .+ = ( +g ` F )
ldualsadd.d
|- D = ( LDual ` W )
ldualsadd.r
|- R = ( Scalar ` D )
ldualsadd.p
|- .+b = ( +g ` R )
ldualsadd.w
|- ( ph -> W e. V )
Assertion ldualsaddN
|- ( ph -> .+b = .+ )

Proof

Step Hyp Ref Expression
1 ldualsadd.f
 |-  F = ( Scalar ` W )
2 ldualsadd.q
 |-  .+ = ( +g ` F )
3 ldualsadd.d
 |-  D = ( LDual ` W )
4 ldualsadd.r
 |-  R = ( Scalar ` D )
5 ldualsadd.p
 |-  .+b = ( +g ` R )
6 ldualsadd.w
 |-  ( ph -> W e. V )
7 eqid
 |-  ( oppR ` F ) = ( oppR ` F )
8 1 7 3 4 6 ldualsca
 |-  ( ph -> R = ( oppR ` F ) )
9 8 fveq2d
 |-  ( ph -> ( +g ` R ) = ( +g ` ( oppR ` F ) ) )
10 7 2 oppradd
 |-  .+ = ( +g ` ( oppR ` F ) )
11 9 5 10 3eqtr4g
 |-  ( ph -> .+b = .+ )