Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ldualsadd.f | |- F = ( Scalar ` W ) |
|
| ldualsadd.q | |- .+ = ( +g ` F ) |
||
| ldualsadd.d | |- D = ( LDual ` W ) |
||
| ldualsadd.r | |- R = ( Scalar ` D ) |
||
| ldualsadd.p | |- .+b = ( +g ` R ) |
||
| ldualsadd.w | |- ( ph -> W e. V ) |
||
| Assertion | ldualsaddN | |- ( ph -> .+b = .+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ldualsadd.f | |- F = ( Scalar ` W ) |
|
| 2 | ldualsadd.q | |- .+ = ( +g ` F ) |
|
| 3 | ldualsadd.d | |- D = ( LDual ` W ) |
|
| 4 | ldualsadd.r | |- R = ( Scalar ` D ) |
|
| 5 | ldualsadd.p | |- .+b = ( +g ` R ) |
|
| 6 | ldualsadd.w | |- ( ph -> W e. V ) |
|
| 7 | eqid | |- ( oppR ` F ) = ( oppR ` F ) |
|
| 8 | 1 7 3 4 6 | ldualsca | |- ( ph -> R = ( oppR ` F ) ) |
| 9 | 8 | fveq2d | |- ( ph -> ( +g ` R ) = ( +g ` ( oppR ` F ) ) ) |
| 10 | 7 2 | oppradd | |- .+ = ( +g ` ( oppR ` F ) ) |
| 11 | 9 5 10 | 3eqtr4g | |- ( ph -> .+b = .+ ) |