Description: Scalar addition for the dual of a vector space. (Contributed by NM, 24-Oct-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualsadd.f | |- F = ( Scalar ` W ) |
|
ldualsadd.q | |- .+ = ( +g ` F ) |
||
ldualsadd.d | |- D = ( LDual ` W ) |
||
ldualsadd.r | |- R = ( Scalar ` D ) |
||
ldualsadd.p | |- .+b = ( +g ` R ) |
||
ldualsadd.w | |- ( ph -> W e. V ) |
||
Assertion | ldualsaddN | |- ( ph -> .+b = .+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualsadd.f | |- F = ( Scalar ` W ) |
|
2 | ldualsadd.q | |- .+ = ( +g ` F ) |
|
3 | ldualsadd.d | |- D = ( LDual ` W ) |
|
4 | ldualsadd.r | |- R = ( Scalar ` D ) |
|
5 | ldualsadd.p | |- .+b = ( +g ` R ) |
|
6 | ldualsadd.w | |- ( ph -> W e. V ) |
|
7 | eqid | |- ( oppR ` F ) = ( oppR ` F ) |
|
8 | 1 7 3 4 6 | ldualsca | |- ( ph -> R = ( oppR ` F ) ) |
9 | 8 | fveq2d | |- ( ph -> ( +g ` R ) = ( +g ` ( oppR ` F ) ) ) |
10 | 7 2 | oppradd | |- .+ = ( +g ` ( oppR ` F ) ) |
11 | 9 5 10 | 3eqtr4g | |- ( ph -> .+b = .+ ) |