Metamath Proof Explorer


Theorem ldualsbase

Description: Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldualsbase.f 𝐹 = ( Scalar ‘ 𝑊 )
ldualsbase.l 𝐿 = ( Base ‘ 𝐹 )
ldualsbase.d 𝐷 = ( LDual ‘ 𝑊 )
ldualsbase.r 𝑅 = ( Scalar ‘ 𝐷 )
ldualsbase.k 𝐾 = ( Base ‘ 𝑅 )
ldualsbase.w ( 𝜑𝑊𝑉 )
Assertion ldualsbase ( 𝜑𝐾 = 𝐿 )

Proof

Step Hyp Ref Expression
1 ldualsbase.f 𝐹 = ( Scalar ‘ 𝑊 )
2 ldualsbase.l 𝐿 = ( Base ‘ 𝐹 )
3 ldualsbase.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldualsbase.r 𝑅 = ( Scalar ‘ 𝐷 )
5 ldualsbase.k 𝐾 = ( Base ‘ 𝑅 )
6 ldualsbase.w ( 𝜑𝑊𝑉 )
7 eqid ( oppr𝐹 ) = ( oppr𝐹 )
8 1 7 3 4 6 ldualsca ( 𝜑𝑅 = ( oppr𝐹 ) )
9 8 fveq2d ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝐹 ) ) )
10 7 2 opprbas 𝐿 = ( Base ‘ ( oppr𝐹 ) )
11 9 5 10 3eqtr4g ( 𝜑𝐾 = 𝐿 )