Description: Base set of scalar ring for the dual of a vector space. (Contributed by NM, 24-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualsbase.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
ldualsbase.l | ⊢ 𝐿 = ( Base ‘ 𝐹 ) | ||
ldualsbase.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | ||
ldualsbase.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | ||
ldualsbase.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
ldualsbase.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | ||
Assertion | ldualsbase | ⊢ ( 𝜑 → 𝐾 = 𝐿 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualsbase.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | ldualsbase.l | ⊢ 𝐿 = ( Base ‘ 𝐹 ) | |
3 | ldualsbase.d | ⊢ 𝐷 = ( LDual ‘ 𝑊 ) | |
4 | ldualsbase.r | ⊢ 𝑅 = ( Scalar ‘ 𝐷 ) | |
5 | ldualsbase.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
6 | ldualsbase.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) | |
7 | eqid | ⊢ ( oppr ‘ 𝐹 ) = ( oppr ‘ 𝐹 ) | |
8 | 1 7 3 4 6 | ldualsca | ⊢ ( 𝜑 → 𝑅 = ( oppr ‘ 𝐹 ) ) |
9 | 8 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝐹 ) ) ) |
10 | 7 2 | opprbas | ⊢ 𝐿 = ( Base ‘ ( oppr ‘ 𝐹 ) ) |
11 | 9 5 10 | 3eqtr4g | ⊢ ( 𝜑 → 𝐾 = 𝐿 ) |