Metamath Proof Explorer


Theorem ldualkrsc

Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldualkrsc.r
|- R = ( Scalar ` W )
ldualkrsc.k
|- K = ( Base ` R )
ldualkrsc.o
|- .0. = ( 0g ` R )
ldualkrsc.f
|- F = ( LFnl ` W )
ldualkrsc.l
|- L = ( LKer ` W )
ldualkrsc.d
|- D = ( LDual ` W )
ldualkrsc.s
|- .x. = ( .s ` D )
ldualkrsc.w
|- ( ph -> W e. LVec )
ldualkrsc.g
|- ( ph -> G e. F )
ldualkrsc.x
|- ( ph -> X e. K )
ldualkrsc.e
|- ( ph -> X =/= .0. )
Assertion ldualkrsc
|- ( ph -> ( L ` ( X .x. G ) ) = ( L ` G ) )

Proof

Step Hyp Ref Expression
1 ldualkrsc.r
 |-  R = ( Scalar ` W )
2 ldualkrsc.k
 |-  K = ( Base ` R )
3 ldualkrsc.o
 |-  .0. = ( 0g ` R )
4 ldualkrsc.f
 |-  F = ( LFnl ` W )
5 ldualkrsc.l
 |-  L = ( LKer ` W )
6 ldualkrsc.d
 |-  D = ( LDual ` W )
7 ldualkrsc.s
 |-  .x. = ( .s ` D )
8 ldualkrsc.w
 |-  ( ph -> W e. LVec )
9 ldualkrsc.g
 |-  ( ph -> G e. F )
10 ldualkrsc.x
 |-  ( ph -> X e. K )
11 ldualkrsc.e
 |-  ( ph -> X =/= .0. )
12 eqid
 |-  ( Base ` W ) = ( Base ` W )
13 eqid
 |-  ( .r ` R ) = ( .r ` R )
14 4 12 1 2 13 6 7 8 10 9 ldualvs
 |-  ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) )
15 14 fveq2d
 |-  ( ph -> ( L ` ( X .x. G ) ) = ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) )
16 12 1 2 13 4 5 8 9 10 3 11 lkrsc
 |-  ( ph -> ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) = ( L ` G ) )
17 15 16 eqtrd
 |-  ( ph -> ( L ` ( X .x. G ) ) = ( L ` G ) )