Step |
Hyp |
Ref |
Expression |
1 |
|
ldualkrsc.r |
|- R = ( Scalar ` W ) |
2 |
|
ldualkrsc.k |
|- K = ( Base ` R ) |
3 |
|
ldualkrsc.o |
|- .0. = ( 0g ` R ) |
4 |
|
ldualkrsc.f |
|- F = ( LFnl ` W ) |
5 |
|
ldualkrsc.l |
|- L = ( LKer ` W ) |
6 |
|
ldualkrsc.d |
|- D = ( LDual ` W ) |
7 |
|
ldualkrsc.s |
|- .x. = ( .s ` D ) |
8 |
|
ldualkrsc.w |
|- ( ph -> W e. LVec ) |
9 |
|
ldualkrsc.g |
|- ( ph -> G e. F ) |
10 |
|
ldualkrsc.x |
|- ( ph -> X e. K ) |
11 |
|
ldualkrsc.e |
|- ( ph -> X =/= .0. ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
14 |
4 12 1 2 13 6 7 8 10 9
|
ldualvs |
|- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
15 |
14
|
fveq2d |
|- ( ph -> ( L ` ( X .x. G ) ) = ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
16 |
12 1 2 13 4 5 8 9 10 3 11
|
lkrsc |
|- ( ph -> ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) = ( L ` G ) ) |
17 |
15 16
|
eqtrd |
|- ( ph -> ( L ` ( X .x. G ) ) = ( L ` G ) ) |