Metamath Proof Explorer


Theorem ldualkrsc

Description: The kernel of a nonzero scalar product of a functional equals the kernel of the functional. (Contributed by NM, 28-Dec-2014)

Ref Expression
Hypotheses ldualkrsc.r 𝑅 = ( Scalar ‘ 𝑊 )
ldualkrsc.k 𝐾 = ( Base ‘ 𝑅 )
ldualkrsc.o 0 = ( 0g𝑅 )
ldualkrsc.f 𝐹 = ( LFnl ‘ 𝑊 )
ldualkrsc.l 𝐿 = ( LKer ‘ 𝑊 )
ldualkrsc.d 𝐷 = ( LDual ‘ 𝑊 )
ldualkrsc.s · = ( ·𝑠𝐷 )
ldualkrsc.w ( 𝜑𝑊 ∈ LVec )
ldualkrsc.g ( 𝜑𝐺𝐹 )
ldualkrsc.x ( 𝜑𝑋𝐾 )
ldualkrsc.e ( 𝜑𝑋0 )
Assertion ldualkrsc ( 𝜑 → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿𝐺 ) )

Proof

Step Hyp Ref Expression
1 ldualkrsc.r 𝑅 = ( Scalar ‘ 𝑊 )
2 ldualkrsc.k 𝐾 = ( Base ‘ 𝑅 )
3 ldualkrsc.o 0 = ( 0g𝑅 )
4 ldualkrsc.f 𝐹 = ( LFnl ‘ 𝑊 )
5 ldualkrsc.l 𝐿 = ( LKer ‘ 𝑊 )
6 ldualkrsc.d 𝐷 = ( LDual ‘ 𝑊 )
7 ldualkrsc.s · = ( ·𝑠𝐷 )
8 ldualkrsc.w ( 𝜑𝑊 ∈ LVec )
9 ldualkrsc.g ( 𝜑𝐺𝐹 )
10 ldualkrsc.x ( 𝜑𝑋𝐾 )
11 ldualkrsc.e ( 𝜑𝑋0 )
12 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
13 eqid ( .r𝑅 ) = ( .r𝑅 )
14 4 12 1 2 13 6 7 8 10 9 ldualvs ( 𝜑 → ( 𝑋 · 𝐺 ) = ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) )
15 14 fveq2d ( 𝜑 → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿 ‘ ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) )
16 12 1 2 13 4 5 8 9 10 3 11 lkrsc ( 𝜑 → ( 𝐿 ‘ ( 𝐺f ( .r𝑅 ) ( ( Base ‘ 𝑊 ) × { 𝑋 } ) ) ) = ( 𝐿𝐺 ) )
17 15 16 eqtrd ( 𝜑 → ( 𝐿 ‘ ( 𝑋 · 𝐺 ) ) = ( 𝐿𝐺 ) )