| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrss.r |
|- R = ( Scalar ` W ) |
| 2 |
|
lkrss.k |
|- K = ( Base ` R ) |
| 3 |
|
lkrss.f |
|- F = ( LFnl ` W ) |
| 4 |
|
lkrss.l |
|- L = ( LKer ` W ) |
| 5 |
|
lkrss.d |
|- D = ( LDual ` W ) |
| 6 |
|
lkrss.s |
|- .x. = ( .s ` D ) |
| 7 |
|
lkrss.w |
|- ( ph -> W e. LVec ) |
| 8 |
|
lkrss.g |
|- ( ph -> G e. F ) |
| 9 |
|
lkrss.x |
|- ( ph -> X e. K ) |
| 10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 12 |
10 1 2 11 3 4 7 8 9
|
lkrscss |
|- ( ph -> ( L ` G ) C_ ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
| 13 |
3 10 1 2 11 5 6 7 9 8
|
ldualvs |
|- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ph -> ( L ` ( X .x. G ) ) = ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
| 15 |
12 14
|
sseqtrrd |
|- ( ph -> ( L ` G ) C_ ( L ` ( X .x. G ) ) ) |