Step |
Hyp |
Ref |
Expression |
1 |
|
lkrss.r |
|- R = ( Scalar ` W ) |
2 |
|
lkrss.k |
|- K = ( Base ` R ) |
3 |
|
lkrss.f |
|- F = ( LFnl ` W ) |
4 |
|
lkrss.l |
|- L = ( LKer ` W ) |
5 |
|
lkrss.d |
|- D = ( LDual ` W ) |
6 |
|
lkrss.s |
|- .x. = ( .s ` D ) |
7 |
|
lkrss.w |
|- ( ph -> W e. LVec ) |
8 |
|
lkrss.g |
|- ( ph -> G e. F ) |
9 |
|
lkrss.x |
|- ( ph -> X e. K ) |
10 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
11 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
12 |
10 1 2 11 3 4 7 8 9
|
lkrscss |
|- ( ph -> ( L ` G ) C_ ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
13 |
3 10 1 2 11 5 6 7 9 8
|
ldualvs |
|- ( ph -> ( X .x. G ) = ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) |
14 |
13
|
fveq2d |
|- ( ph -> ( L ` ( X .x. G ) ) = ( L ` ( G oF ( .r ` R ) ( ( Base ` W ) X. { X } ) ) ) ) |
15 |
12 14
|
sseqtrrd |
|- ( ph -> ( L ` G ) C_ ( L ` ( X .x. G ) ) ) |