Metamath Proof Explorer


Theorem lkrss

Description: The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses lkrss.r R = Scalar W
lkrss.k K = Base R
lkrss.f F = LFnl W
lkrss.l L = LKer W
lkrss.d D = LDual W
lkrss.s · ˙ = D
lkrss.w φ W LVec
lkrss.g φ G F
lkrss.x φ X K
Assertion lkrss φ L G L X · ˙ G

Proof

Step Hyp Ref Expression
1 lkrss.r R = Scalar W
2 lkrss.k K = Base R
3 lkrss.f F = LFnl W
4 lkrss.l L = LKer W
5 lkrss.d D = LDual W
6 lkrss.s · ˙ = D
7 lkrss.w φ W LVec
8 lkrss.g φ G F
9 lkrss.x φ X K
10 eqid Base W = Base W
11 eqid R = R
12 10 1 2 11 3 4 7 8 9 lkrscss φ L G L G R f Base W × X
13 3 10 1 2 11 5 6 7 9 8 ldualvs φ X · ˙ G = G R f Base W × X
14 13 fveq2d φ L X · ˙ G = L G R f Base W × X
15 12 14 sseqtrrd φ L G L X · ˙ G