Metamath Proof Explorer


Theorem lkrss

Description: The kernel of a scalar product of a functional includes the kernel of the functional. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses lkrss.r R=ScalarW
lkrss.k K=BaseR
lkrss.f F=LFnlW
lkrss.l L=LKerW
lkrss.d D=LDualW
lkrss.s ·˙=D
lkrss.w φWLVec
lkrss.g φGF
lkrss.x φXK
Assertion lkrss φLGLX·˙G

Proof

Step Hyp Ref Expression
1 lkrss.r R=ScalarW
2 lkrss.k K=BaseR
3 lkrss.f F=LFnlW
4 lkrss.l L=LKerW
5 lkrss.d D=LDualW
6 lkrss.s ·˙=D
7 lkrss.w φWLVec
8 lkrss.g φGF
9 lkrss.x φXK
10 eqid BaseW=BaseW
11 eqid R=R
12 10 1 2 11 3 4 7 8 9 lkrscss φLGLGRfBaseW×X
13 3 10 1 2 11 5 6 7 9 8 ldualvs φX·˙G=GRfBaseW×X
14 13 fveq2d φLX·˙G=LGRfBaseW×X
15 12 14 sseqtrrd φLGLX·˙G