Metamath Proof Explorer


Theorem ldual1dim

Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldual1dim.f F = LFnl W
ldual1dim.l L = LKer W
ldual1dim.d D = LDual W
ldual1dim.n N = LSpan D
ldual1dim.w φ W LVec
ldual1dim.g φ G F
Assertion ldual1dim φ N G = g F | L G L g

Proof

Step Hyp Ref Expression
1 ldual1dim.f F = LFnl W
2 ldual1dim.l L = LKer W
3 ldual1dim.d D = LDual W
4 ldual1dim.n N = LSpan D
5 ldual1dim.w φ W LVec
6 ldual1dim.g φ G F
7 eqid Scalar W = Scalar W
8 eqid Base Scalar W = Base Scalar W
9 eqid Scalar D = Scalar D
10 eqid Base Scalar D = Base Scalar D
11 7 8 3 9 10 5 ldualsbase φ Base Scalar D = Base Scalar W
12 11 eleq2d φ k Base Scalar D k Base Scalar W
13 12 anbi1d φ k Base Scalar D g = k D G k Base Scalar W g = k D G
14 eqid Base W = Base W
15 eqid Scalar W = Scalar W
16 eqid D = D
17 5 adantr φ k Base Scalar W W LVec
18 simpr φ k Base Scalar W k Base Scalar W
19 6 adantr φ k Base Scalar W G F
20 1 14 7 8 15 3 16 17 18 19 ldualvs φ k Base Scalar W k D G = G Scalar W f Base W × k
21 20 eqeq2d φ k Base Scalar W g = k D G g = G Scalar W f Base W × k
22 21 pm5.32da φ k Base Scalar W g = k D G k Base Scalar W g = G Scalar W f Base W × k
23 13 22 bitrd φ k Base Scalar D g = k D G k Base Scalar W g = G Scalar W f Base W × k
24 23 rexbidv2 φ k Base Scalar D g = k D G k Base Scalar W g = G Scalar W f Base W × k
25 24 abbidv φ g | k Base Scalar D g = k D G = g | k Base Scalar W g = G Scalar W f Base W × k
26 lveclmod W LVec W LMod
27 3 26 lduallmod W LVec D LMod
28 5 27 syl φ D LMod
29 eqid Base D = Base D
30 1 3 29 5 6 ldualelvbase φ G Base D
31 9 10 29 16 4 lspsn D LMod G Base D N G = g | k Base Scalar D g = k D G
32 28 30 31 syl2anc φ N G = g | k Base Scalar D g = k D G
33 14 7 1 2 8 15 5 6 lfl1dim φ g F | L G L g = g | k Base Scalar W g = G Scalar W f Base W × k
34 25 32 33 3eqtr4d φ N G = g F | L G L g