Step |
Hyp |
Ref |
Expression |
1 |
|
ldual1dim.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
2 |
|
ldual1dim.l |
⊢ 𝐿 = ( LKer ‘ 𝑊 ) |
3 |
|
ldual1dim.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
4 |
|
ldual1dim.n |
⊢ 𝑁 = ( LSpan ‘ 𝐷 ) |
5 |
|
ldual1dim.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
6 |
|
ldual1dim.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) ) |
11 |
7 8 3 9 10 5
|
ldualsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ↔ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ) ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐷 ) = ( ·𝑠 ‘ 𝐷 ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LVec ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝐺 ∈ 𝐹 ) |
20 |
1 14 7 8 15 3 16 17 18 19
|
ldualvs |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ↔ 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) |
22 |
21
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) ) |
23 |
13 22
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) ) |
24 |
23
|
rexbidv2 |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) |
25 |
24
|
abbidv |
⊢ ( 𝜑 → { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) } ) |
26 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
27 |
3 26
|
lduallmod |
⊢ ( 𝑊 ∈ LVec → 𝐷 ∈ LMod ) |
28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ LMod ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
30 |
1 3 29 5 6
|
ldualelvbase |
⊢ ( 𝜑 → 𝐺 ∈ ( Base ‘ 𝐷 ) ) |
31 |
9 10 29 16 4
|
lspsn |
⊢ ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) } ) |
32 |
28 30 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠 ‘ 𝐷 ) 𝐺 ) } ) |
33 |
14 7 1 2 8 15 5 6
|
lfl1dim |
⊢ ( 𝜑 → { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺 ∘f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) } ) |
34 |
25 32 33
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔 ∈ 𝐹 ∣ ( 𝐿 ‘ 𝐺 ) ⊆ ( 𝐿 ‘ 𝑔 ) } ) |