Metamath Proof Explorer


Theorem ldual1dim

Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldual1dim.f 𝐹 = ( LFnl ‘ 𝑊 )
ldual1dim.l 𝐿 = ( LKer ‘ 𝑊 )
ldual1dim.d 𝐷 = ( LDual ‘ 𝑊 )
ldual1dim.n 𝑁 = ( LSpan ‘ 𝐷 )
ldual1dim.w ( 𝜑𝑊 ∈ LVec )
ldual1dim.g ( 𝜑𝐺𝐹 )
Assertion ldual1dim ( 𝜑 → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑔 ) } )

Proof

Step Hyp Ref Expression
1 ldual1dim.f 𝐹 = ( LFnl ‘ 𝑊 )
2 ldual1dim.l 𝐿 = ( LKer ‘ 𝑊 )
3 ldual1dim.d 𝐷 = ( LDual ‘ 𝑊 )
4 ldual1dim.n 𝑁 = ( LSpan ‘ 𝐷 )
5 ldual1dim.w ( 𝜑𝑊 ∈ LVec )
6 ldual1dim.g ( 𝜑𝐺𝐹 )
7 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
8 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
9 eqid ( Scalar ‘ 𝐷 ) = ( Scalar ‘ 𝐷 )
10 eqid ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝐷 ) )
11 7 8 3 9 10 5 ldualsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐷 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
12 11 eleq2d ( 𝜑 → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ↔ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
13 12 anbi1d ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ) ) )
14 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
15 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
16 eqid ( ·𝑠𝐷 ) = ( ·𝑠𝐷 )
17 5 adantr ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LVec )
18 simpr ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
19 6 adantr ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝐺𝐹 )
20 1 14 7 8 15 3 16 17 18 19 ldualvs ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) )
21 20 eqeq2d ( ( 𝜑𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ↔ 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) )
22 21 pm5.32da ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) )
23 13 22 bitrd ( 𝜑 → ( ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) ∧ 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ) ↔ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) ) )
24 23 rexbidv2 ( 𝜑 → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) ) )
25 24 abbidv ( 𝜑 → { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) } )
26 lveclmod ( 𝑊 ∈ LVec → 𝑊 ∈ LMod )
27 3 26 lduallmod ( 𝑊 ∈ LVec → 𝐷 ∈ LMod )
28 5 27 syl ( 𝜑𝐷 ∈ LMod )
29 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
30 1 3 29 5 6 ldualelvbase ( 𝜑𝐺 ∈ ( Base ‘ 𝐷 ) )
31 9 10 29 16 4 lspsn ( ( 𝐷 ∈ LMod ∧ 𝐺 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) } )
32 28 30 31 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝐷 ) ) 𝑔 = ( 𝑘 ( ·𝑠𝐷 ) 𝐺 ) } )
33 14 7 1 2 8 15 5 6 lfl1dim ( 𝜑 → { 𝑔𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑔 ) } = { 𝑔 ∣ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑔 = ( 𝐺f ( .r ‘ ( Scalar ‘ 𝑊 ) ) ( ( Base ‘ 𝑊 ) × { 𝑘 } ) ) } )
34 25 32 33 3eqtr4d ( 𝜑 → ( 𝑁 ‘ { 𝐺 } ) = { 𝑔𝐹 ∣ ( 𝐿𝐺 ) ⊆ ( 𝐿𝑔 ) } )