Step |
Hyp |
Ref |
Expression |
1 |
|
eqlkr4.s |
⊢ 𝑆 = ( Scalar ‘ 𝑊 ) |
2 |
|
eqlkr4.r |
⊢ 𝑅 = ( Base ‘ 𝑆 ) |
3 |
|
eqlkr4.f |
⊢ 𝐹 = ( LFnl ‘ 𝑊 ) |
4 |
|
eqlkr4.k |
⊢ 𝐾 = ( LKer ‘ 𝑊 ) |
5 |
|
eqlkr4.d |
⊢ 𝐷 = ( LDual ‘ 𝑊 ) |
6 |
|
eqlkr4.t |
⊢ · = ( ·𝑠 ‘ 𝐷 ) |
7 |
|
eqlkr4.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
8 |
|
eqlkr4.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
9 |
|
eqlkr4.h |
⊢ ( 𝜑 → 𝐻 ∈ 𝐹 ) |
10 |
|
eqlkr4.e |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
13 |
1 2 11 12 3 4
|
eqlkr2 |
⊢ ( ( 𝑊 ∈ LVec ∧ ( 𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹 ) ∧ ( 𝐾 ‘ 𝐺 ) = ( 𝐾 ‘ 𝐻 ) ) → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝐺 ∘f ( .r ‘ 𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) |
14 |
7 8 9 10 13
|
syl121anc |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝐺 ∘f ( .r ‘ 𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑊 ∈ LVec ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝑟 ∈ 𝑅 ) |
17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → 𝐺 ∈ 𝐹 ) |
18 |
3 12 1 2 11 5 6 15 16 17
|
ldualvs |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝑟 · 𝐺 ) = ( 𝐺 ∘f ( .r ‘ 𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ 𝑅 ) → ( 𝐻 = ( 𝑟 · 𝐺 ) ↔ 𝐻 = ( 𝐺 ∘f ( .r ‘ 𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) ) |
20 |
19
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ↔ ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝐺 ∘f ( .r ‘ 𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) ) |
21 |
14 20
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑅 𝐻 = ( 𝑟 · 𝐺 ) ) |