Metamath Proof Explorer


Theorem eqlkr4

Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 4-Feb-2015)

Ref Expression
Hypotheses eqlkr4.s 𝑆 = ( Scalar ‘ 𝑊 )
eqlkr4.r 𝑅 = ( Base ‘ 𝑆 )
eqlkr4.f 𝐹 = ( LFnl ‘ 𝑊 )
eqlkr4.k 𝐾 = ( LKer ‘ 𝑊 )
eqlkr4.d 𝐷 = ( LDual ‘ 𝑊 )
eqlkr4.t · = ( ·𝑠𝐷 )
eqlkr4.w ( 𝜑𝑊 ∈ LVec )
eqlkr4.g ( 𝜑𝐺𝐹 )
eqlkr4.h ( 𝜑𝐻𝐹 )
eqlkr4.e ( 𝜑 → ( 𝐾𝐺 ) = ( 𝐾𝐻 ) )
Assertion eqlkr4 ( 𝜑 → ∃ 𝑟𝑅 𝐻 = ( 𝑟 · 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqlkr4.s 𝑆 = ( Scalar ‘ 𝑊 )
2 eqlkr4.r 𝑅 = ( Base ‘ 𝑆 )
3 eqlkr4.f 𝐹 = ( LFnl ‘ 𝑊 )
4 eqlkr4.k 𝐾 = ( LKer ‘ 𝑊 )
5 eqlkr4.d 𝐷 = ( LDual ‘ 𝑊 )
6 eqlkr4.t · = ( ·𝑠𝐷 )
7 eqlkr4.w ( 𝜑𝑊 ∈ LVec )
8 eqlkr4.g ( 𝜑𝐺𝐹 )
9 eqlkr4.h ( 𝜑𝐻𝐹 )
10 eqlkr4.e ( 𝜑 → ( 𝐾𝐺 ) = ( 𝐾𝐻 ) )
11 eqid ( .r𝑆 ) = ( .r𝑆 )
12 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
13 1 2 11 12 3 4 eqlkr2 ( ( 𝑊 ∈ LVec ∧ ( 𝐺𝐹𝐻𝐹 ) ∧ ( 𝐾𝐺 ) = ( 𝐾𝐻 ) ) → ∃ 𝑟𝑅 𝐻 = ( 𝐺f ( .r𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) )
14 7 8 9 10 13 syl121anc ( 𝜑 → ∃ 𝑟𝑅 𝐻 = ( 𝐺f ( .r𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) )
15 7 adantr ( ( 𝜑𝑟𝑅 ) → 𝑊 ∈ LVec )
16 simpr ( ( 𝜑𝑟𝑅 ) → 𝑟𝑅 )
17 8 adantr ( ( 𝜑𝑟𝑅 ) → 𝐺𝐹 )
18 3 12 1 2 11 5 6 15 16 17 ldualvs ( ( 𝜑𝑟𝑅 ) → ( 𝑟 · 𝐺 ) = ( 𝐺f ( .r𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) )
19 18 eqeq2d ( ( 𝜑𝑟𝑅 ) → ( 𝐻 = ( 𝑟 · 𝐺 ) ↔ 𝐻 = ( 𝐺f ( .r𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) )
20 19 rexbidva ( 𝜑 → ( ∃ 𝑟𝑅 𝐻 = ( 𝑟 · 𝐺 ) ↔ ∃ 𝑟𝑅 𝐻 = ( 𝐺f ( .r𝑆 ) ( ( Base ‘ 𝑊 ) × { 𝑟 } ) ) ) )
21 14 20 mpbird ( 𝜑 → ∃ 𝑟𝑅 𝐻 = ( 𝑟 · 𝐺 ) )