Step |
Hyp |
Ref |
Expression |
1 |
|
lkrin.f |
|- F = ( LFnl ` W ) |
2 |
|
lkrin.k |
|- K = ( LKer ` W ) |
3 |
|
lkrin.d |
|- D = ( LDual ` W ) |
4 |
|
lkrin.p |
|- .+ = ( +g ` D ) |
5 |
|
lkrin.w |
|- ( ph -> W e. LMod ) |
6 |
|
lkrin.e |
|- ( ph -> G e. F ) |
7 |
|
lkrin.g |
|- ( ph -> H e. F ) |
8 |
|
elin |
|- ( v e. ( ( K ` G ) i^i ( K ` H ) ) <-> ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) |
9 |
5
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> W e. LMod ) |
10 |
6
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> G e. F ) |
11 |
|
simprl |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` G ) ) |
12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
13 |
12 1 2
|
lkrcl |
|- ( ( W e. LMod /\ G e. F /\ v e. ( K ` G ) ) -> v e. ( Base ` W ) ) |
14 |
9 10 11 13
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( Base ` W ) ) |
15 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
16 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
17 |
7
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> H e. F ) |
18 |
12 15 16 1 3 4 9 10 17 14
|
ldualvaddval |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G .+ H ) ` v ) = ( ( G ` v ) ( +g ` ( Scalar ` W ) ) ( H ` v ) ) ) |
19 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
20 |
15 19 1 2
|
lkrf0 |
|- ( ( W e. LMod /\ G e. F /\ v e. ( K ` G ) ) -> ( G ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
21 |
9 10 11 20
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( G ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
22 |
|
simprr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` H ) ) |
23 |
15 19 1 2
|
lkrf0 |
|- ( ( W e. LMod /\ H e. F /\ v e. ( K ` H ) ) -> ( H ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
24 |
9 17 22 23
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( H ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
25 |
21 24
|
oveq12d |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G ` v ) ( +g ` ( Scalar ` W ) ) ( H ` v ) ) = ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) ) |
26 |
15
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
27 |
5 26
|
syl |
|- ( ph -> ( Scalar ` W ) e. Ring ) |
28 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
29 |
27 28
|
syl |
|- ( ph -> ( Scalar ` W ) e. Grp ) |
30 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
31 |
30 19
|
grpidcl |
|- ( ( Scalar ` W ) e. Grp -> ( 0g ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
32 |
30 16 19
|
grplid |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 0g ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
33 |
29 31 32
|
syl2anc2 |
|- ( ph -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
35 |
18 25 34
|
3eqtrd |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
36 |
1 3 4 5 6 7
|
ldualvaddcl |
|- ( ph -> ( G .+ H ) e. F ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( G .+ H ) e. F ) |
38 |
12 15 19 1 2
|
ellkr |
|- ( ( W e. LMod /\ ( G .+ H ) e. F ) -> ( v e. ( K ` ( G .+ H ) ) <-> ( v e. ( Base ` W ) /\ ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
39 |
9 37 38
|
syl2anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( v e. ( K ` ( G .+ H ) ) <-> ( v e. ( Base ` W ) /\ ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
40 |
14 35 39
|
mpbir2and |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` ( G .+ H ) ) ) |
41 |
40
|
ex |
|- ( ph -> ( ( v e. ( K ` G ) /\ v e. ( K ` H ) ) -> v e. ( K ` ( G .+ H ) ) ) ) |
42 |
8 41
|
syl5bi |
|- ( ph -> ( v e. ( ( K ` G ) i^i ( K ` H ) ) -> v e. ( K ` ( G .+ H ) ) ) ) |
43 |
42
|
ssrdv |
|- ( ph -> ( ( K ` G ) i^i ( K ` H ) ) C_ ( K ` ( G .+ H ) ) ) |