| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lkrin.f |
|- F = ( LFnl ` W ) |
| 2 |
|
lkrin.k |
|- K = ( LKer ` W ) |
| 3 |
|
lkrin.d |
|- D = ( LDual ` W ) |
| 4 |
|
lkrin.p |
|- .+ = ( +g ` D ) |
| 5 |
|
lkrin.w |
|- ( ph -> W e. LMod ) |
| 6 |
|
lkrin.e |
|- ( ph -> G e. F ) |
| 7 |
|
lkrin.g |
|- ( ph -> H e. F ) |
| 8 |
|
elin |
|- ( v e. ( ( K ` G ) i^i ( K ` H ) ) <-> ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) |
| 9 |
5
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> W e. LMod ) |
| 10 |
6
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> G e. F ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` G ) ) |
| 12 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 13 |
12 1 2
|
lkrcl |
|- ( ( W e. LMod /\ G e. F /\ v e. ( K ` G ) ) -> v e. ( Base ` W ) ) |
| 14 |
9 10 11 13
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( Base ` W ) ) |
| 15 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 16 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> H e. F ) |
| 18 |
12 15 16 1 3 4 9 10 17 14
|
ldualvaddval |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G .+ H ) ` v ) = ( ( G ` v ) ( +g ` ( Scalar ` W ) ) ( H ` v ) ) ) |
| 19 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
| 20 |
15 19 1 2
|
lkrf0 |
|- ( ( W e. LMod /\ G e. F /\ v e. ( K ` G ) ) -> ( G ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
| 21 |
9 10 11 20
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( G ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
| 22 |
|
simprr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` H ) ) |
| 23 |
15 19 1 2
|
lkrf0 |
|- ( ( W e. LMod /\ H e. F /\ v e. ( K ` H ) ) -> ( H ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
| 24 |
9 17 22 23
|
syl3anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( H ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
| 25 |
21 24
|
oveq12d |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G ` v ) ( +g ` ( Scalar ` W ) ) ( H ` v ) ) = ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) ) |
| 26 |
15
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 27 |
5 26
|
syl |
|- ( ph -> ( Scalar ` W ) e. Ring ) |
| 28 |
|
ringgrp |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
| 29 |
27 28
|
syl |
|- ( ph -> ( Scalar ` W ) e. Grp ) |
| 30 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 31 |
30 19
|
grpidcl |
|- ( ( Scalar ` W ) e. Grp -> ( 0g ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 32 |
30 16 19
|
grplid |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 0g ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
| 33 |
29 31 32
|
syl2anc2 |
|- ( ph -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( +g ` ( Scalar ` W ) ) ( 0g ` ( Scalar ` W ) ) ) = ( 0g ` ( Scalar ` W ) ) ) |
| 35 |
18 25 34
|
3eqtrd |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) |
| 36 |
1 3 4 5 6 7
|
ldualvaddcl |
|- ( ph -> ( G .+ H ) e. F ) |
| 37 |
36
|
adantr |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( G .+ H ) e. F ) |
| 38 |
12 15 19 1 2
|
ellkr |
|- ( ( W e. LMod /\ ( G .+ H ) e. F ) -> ( v e. ( K ` ( G .+ H ) ) <-> ( v e. ( Base ` W ) /\ ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
| 39 |
9 37 38
|
syl2anc |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> ( v e. ( K ` ( G .+ H ) ) <-> ( v e. ( Base ` W ) /\ ( ( G .+ H ) ` v ) = ( 0g ` ( Scalar ` W ) ) ) ) ) |
| 40 |
14 35 39
|
mpbir2and |
|- ( ( ph /\ ( v e. ( K ` G ) /\ v e. ( K ` H ) ) ) -> v e. ( K ` ( G .+ H ) ) ) |
| 41 |
40
|
ex |
|- ( ph -> ( ( v e. ( K ` G ) /\ v e. ( K ` H ) ) -> v e. ( K ` ( G .+ H ) ) ) ) |
| 42 |
8 41
|
biimtrid |
|- ( ph -> ( v e. ( ( K ` G ) i^i ( K ` H ) ) -> v e. ( K ` ( G .+ H ) ) ) ) |
| 43 |
42
|
ssrdv |
|- ( ph -> ( ( K ` G ) i^i ( K ` H ) ) C_ ( K ` ( G .+ H ) ) ) |